
A Guide to ERGO Packages

Version 1.2 (Solon)

Edited by

Michael Kifer
Coherent Knowledge

May 2017

Portions Copyright c© 2013–2017 Coherent Knowledge

Contents

1 JAVA-to-ERGO Interfaces 1

1.1 The Low-level Interface . 1

1.2 The High-Level Interface . 5

1.3 Executing Java Application Programs with ERGO 12

1.4 Summary of the Variables Used by the Interface 13

1.5 Building the Prepackaged Examples . 14

2 ERGO-to-Java Interface 15

2.1 General . 15

2.2 Dialog Boxes . 16

2.3 Windows . 16

2.4 Printing to a Window . 17

2.5 Scripting Java Applications . 17

3 Querying SQL Databases 18

3.1 Connecting to a Database . 18

3.2 Queries . 19

4 Querying SPARQL Endpoints 22

4.1 General . 22

4.2 Queries and Updates . 23

4.3 Creating Your Own Triple Store . 26

4.3.1 GraphDB . 26

4.3.2 Jena TDB . 27

5 Loading RDF and OWL files 28

5.1 General . 28

i

CONTENTS

6 Evidential Probabilistic Reasoning in ERGO 31

7 Importing Tabular Data (DSV, TSV, etc.) 34

8 Importing JSON Structures 37

8.1 Introduction . 37

8.2 API for Importing JSON as Terms . 38

8.3 API for Importing JSON as Facts . 40

8.4 Exporting to JSON . 42

8.4.1 Exporting HiLog Terms to JSON . 42

8.4.2 Exporting ERGO Objects to JSON . 42

9 Persistent Modules 48

9.1 PM Interface . 48

9.2 Examples . 50

10 SGML and XML Parser for ERGO 52

10.1 Summary of the Predicates . 52

10.2 Description . 52

10.3 XPath Support . 53

10.4 Mapping XML to ERGO . 54

10.4.1 Object Ids . 55

10.4.2 Text and Mixed Element Content . 55

10.4.3 Multivalued XML Attributes . 56

10.4.4 Ordering . 57

10.4.5 More on Special Attributes . 58

Portions Copyright c© 2013–2017 Coherent Knowledge ii

Chapter 1

JAVA-to-ERGO Interfaces
by Aditi Pandit and Michael Kifer

This chapter documents the API for accessing ERGO from Java programs. The API has two
versions: a low-level API, which enables Java programs to send arbitrary queries to ERGO

and get results, and a high-level API, which is more limited, but is easier to use. The high-
level API establishes a correspondence between Java classes and ERGO classes, which enables
manipulation of ERGO classes by executing appropriate methods on the corresponding Java
classes. Both interfaces rely on the Java-XSB interface, called Interprolog, developed by
Interprolog.com.

The API assumes that a Java program is started first and then it invokes XSB/ERGO as
a subprocess. The XSB/ERGO side is passive: it only responds to the queries sent by the
Java side. Queries can be anything that is accepted at the ERGO shell prompt: queries,
insert/delete commands, control switches, etc., are all fine. One thing to remember is that the
backslash is used in Java as an escape symbol and in ERGO as a prefix of the builtin operators
and commands. Therefore, each backslash must be escaped with another backslash. That is,
instead of a query like ”p(?X) \and q(?X).” the API requires ”p(?X) \\and q(?X).”.

1.1 The Low-level Interface

The low-level API enables Java programs to send arbitrary queries to ERGO and get results.
It is assumed that the following environment variables are set:

JAVA BIN: This variable points to the folder containing the javac and java executable programs.
This variable is set in the windowsVariables.bat and unixVariables.sh scripts in the java
subfolder of the ERGO distribution.

PROLOGDIR: This variable points to the folder containing the XSB executable. This variable
is set in the flora settings.bat and flora settings.sh scripts in the java folder.

FLORADIR: This variable must point to the folder containing the ERGO installation. It is set
by the flora settings.bat and flora settings.sh files in the java subfolder and this is
where users should look in order to get the correct values for their systems. Both of the above
files are generated automatically by the system installation scripts.

1

Interprolog.com

CHAPTER 1. JAVA-TO-ERGO INTERFACES

In order to be able to access ERGO, the Java program must first establish a session for a
running instance of ERGO. Multiple sessions can be active at the same time. The knowledge
bases in the different running instances are completely independent. Sessions are instances
of the class javaAPI.src.FloraSession. This class provides methods for opening/closing
sessions and loading ERGO knowledge bases (which are also used in the high-level interface).
In addition, a session provides methods for executing arbitrary ERGO queries. The following
is the complete list of the methods that are available in that class.

• public FloraSession()

This method creates a connection to an instance of ERGO.

• close()

This method must be called to terminate a ERGO session. Note that this does not
terminate the Java program that initiated the session: to exit the Java program that
talks to ERGO, one needs to execute the statement

System.exit();

Note that just returning from the main method is not enough.

• public Iterator<FloraObject> ExecuteQuery(String command)

This method executes the ERGO command given by the parameter command. It is used to
execute ERGO queries that do not require variable bindings to be returned back to Java
or queries that have only a single variable to be returned. Each binding is represented
as an instance of the class javaAPI.src.FloraObject. The examples below illustrate
how to process the results returned by this method.

• public Iterator<HashMap<String,FloraObject>> ExecuteQuery(String query, Vector vars)

This method executes the ERGO query given by the first argument. The Vector vars

(of strings) specifies the names of all the variables in the query for which bindings need
to be returned. These variables are added to the vector using the method add before
calling ExecuteQuery. For instance, vars.add("?X").

This version of ExecuteQuery returns an iterator over all bindings returned by the ERGO

query. Each binding is represented by a HashMap<String,FloraObject> object which
can be used to obtain the value of each variable in the query (using the get() method).
The value of each variable returned is an instance of javaAPI.src.FloraObject.

See the examples below for how to handle the results returned by this method.

• void loadFile(String fileName,String moduleName)

This method loads the ERGO program, specified by the parameter fileName into the
ERGO module specified in moduleName.

• void compileFile(String fileName,String moduleName)

This method compiles (but does not load) the ERGO program, specified by the param-
eter fileName for the ERGO module specified in moduleName.

Portions Copyright c© 2013–2017 Coherent Knowledge 2

CHAPTER 1. JAVA-TO-ERGO INTERFACES

• void addFile(String fileName,String moduleName)

This method adds the ERGO program, specified by the parameter fileName to an
existing ERGO module specified in moduleName.

• void compileaddFile(String fileName,String moduleName)

This method compiles the ERGO program, specified by the parameter fileName for
addition to the ERGO module specified in moduleName.

The code snippet below illustrates the low-level API.

Step 1: Writing a ERGO program. Let us assume that we have a file, called
flogic basics.flr, which contains the following information:

person :: object.

dangerous_hobby :: object.

john:employee.

employee::person.

bob:person.

tim:person.

betty:employee.

person[|age=>integer,

kids=>person,

salary(year)=>value,

hobbies=>hobby,

believes_in=>something,

instances => person

|].

mary:employee[

age->29,

kids -> {tim,leo,betty},

salary(1998) -> a_lot

].

tim[hobbies -> {stamps, snowboard}].

betty[hobbies->{fishing,diving}].

snowboard:dangerous_hobby.

diving:dangerous_hobby.

?_X[self-> ?_X].

person[|believes_in -> {something, something_else}|].

Portions Copyright c© 2013–2017 Coherent Knowledge 3

CHAPTER 1. JAVA-TO-ERGO INTERFACES

Step 2: Writing a JAVA application to interface with ERGO. The following code
loads a ERGO program from a file and then passes queries to the knowledge base.

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class flogicbasicsExample {

public static void main(String[] args) {

// create a new session for a running instance of the engine

FloraSession session = new FloraSession();

System.out.println("Engine session started");

// Assume that Java was called with -DINPUT_FILE=the-file-name

String fileName = System.getProperty("INPUT_FILE");

if(fileName == null || fileName.trim().length() == 0) {

System.out.println("Invalid path to example file!");

System.exit(0);

}

// load the program into module basic_mod

session.loadFile(fileName,"basic_mod");

/* Running queries from flogic_basics.flr */

/* Query for persons */

String command = "?X:person@basic_mod.";

System.out.println("Query:"+command);

Iterator<FloraObject> personObjs = session.ExecuteQuery(command);

/* Printing out the person names and information about their kids */

while (personObjs.hasNext()) {

FloraObject personObj = personObjs.next();

System.out.println("Person name:"+personObj);

command = "person[instances -> ?X]@basic_mod.";

System.out.println("Query:"+command);

personObjs = session.ExecuteQuery(command);

/* Prining out the person names */

while (personObjs.hasNext()) {

Object personObj = personObjs.next();

System.out.println("Person Id: "+personObj);

}

Portions Copyright c© 2013–2017 Coherent Knowledge 4

CHAPTER 1. JAVA-TO-ERGO INTERFACES

/* Example of ExecuteQuery with two arguments */

Vector<String> vars = new Vector<String>();

vars.add("?X");

vars.add("?Y");

Iterator<HashMap<String,FloraObject>> allmatches =

session.ExecuteQuery("?X[believes_in -> ?Y]@basic_mod.",vars);

System.out.println("Query:?X[believes_in -> ?Y]@basic_mod.");

while(allmatches.hasNext()) {

HashMap<String,FloraObject> firstmatch = allmatches.next();

Object Xobj = firstmatch.get("?X");

Object Yobj = firstmatch.get("?Y");

System.out.println(Xobj+" believes in: "+?Yobj);

}

// quit the system

session.close();

System.exit(0);

}

}

For the information on how to invoke the above Java class in the context of the Java-ERGO

API, please see Section 1.3.

1.2 The High-Level Interface

The high-level API operates by creating proxy Java classes for ERGO classes selected by the
user. This enables the Java program to operate on ERGO classes by executing appropriate
methods on the corresponding proxy Java classes. The use of the high-level API involves a
number of steps, as described below.

Readers who intend to use only the low-level Java-ERGO interface can skip this section.

Note: This interface will not work for ERGO programs that use non-alphanumeric
names for methods and predicates. For instance, if a program involves statements like
foo[’bar$#123’->456] then the interface might generate syntactically incorrect Java proxy
classes and errors will be issued during the compilation.

Stage 1: Writing a ERGO file. We assume the same flogic basics.flr file as in the
previous example.

Stage 2: Generating Java classes that serve as proxies for ERGO classes. The
ERGO side of the Java-to-ERGO high level API provides a predicate to generate Java proxy
classes for each F-logic class which have a signature declaration in the ERGO knowledge base.
A proxy class gets defined so that it would have methods to manipulate the attributes and
methods of the corresponding F-logic class for which signature declarations are available. If
an F-logic class has a declared value-returning attribute foobar then the proxy class will

Portions Copyright c© 2013–2017 Coherent Knowledge 5

CHAPTER 1. JAVA-TO-ERGO INTERFACES

have the following methods. Each method name has the form actionS1S2S3 foobar, where
action is either get, set, or delete. The specifier S1 indicates the type of the method —
V for value-returning, B for Boolean, and P for procedural. The specifier S2 tells whether
the operation applies to the signature of the method (S), e.g., person[foobar=>string], or
to the actual data (D), for example, john[foobar->3]. Finally, the specifier S3 tells if the
operation applies to the inheritable variant of the method (I) or its non-inheritable variant
(N).

1. public Iterator<FloraObject> getVDI foobar()

public Iterator<FloraObject> getVDN foobar()

public Iterator<FloraObject> getVSI foobar()

public Iterator<FloraObject> getVSN foobar()

The above methods query the knowledge base and get all answers for the attribute
foobar. They return iterators through which these answers can be processed one-by-
one. Each object returned by the iterator is of type FloraObject. The getVDN form
queries non-inheritable data methods and getVDI the inheritable ones. The getVSI and
getVSN forms query the signatures of the attribute foobar.

2. public boolean setVDI foobar(Vector value)

public boolean setVDN foobar(Vector value)

public boolean setVSI foobar(Vector value)

public boolean setVSN foobar(Vector value)

These methods add values to the set of values returned by the attribute foobar. The
values must be placed in the vector parameter passed these methods. Again, setVDN
adds data for non-inheritable methods and setVDI is used for inheritable methods.
setVSI and setVSN add types to signatures.

3. public boolean setVDI foobar(Object value)

public boolean setVDN foobar(Object value)

public boolean setVSI foobar(Object value)

public boolean setVSN foobar(Object value)

These methods provide a simplified interface when only one value needs to be added. It
works like the earlier set * methods, except that only one value given as an argument
is added.

4. public boolean deleteVDI foobar(Vector value)

public boolean deleteVDN foobar(Vector value)

public boolean deleteVSI foobar(Vector value)

public boolean deleteVSN foobar(Vector value)

Delete a set of values of the attribute foobar. The set is specified in the vector argument.

5. public boolean deleteVDI foobar(Object value)

public boolean deleteVDN foobar(Object value)

public boolean deleteVSI foobar(Object value)

public boolean deleteVSN foobar(Object value)

A simplified interface for the case when only one value needs to be deleted.

6. public boolean deleteVDI foobar()

public boolean deleteVDN foobar()

Portions Copyright c© 2013–2017 Coherent Knowledge 6

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public boolean deleteVSI foobar()

public boolean deleteVSN foobar()

Delete all values for the attribute foobar.

For F-logic methods with arguments, the high-level API provides Java methods as above,
but they take more arguments to accommodate the parameters that F-logic methods take.
Let us assume that the F-logic method is called foobar2 and it takes parameters arg1 and
arg2. As before the getVDI *, setVDI *, etc., forms of the Java methods are for dealing
with inheritable ERGO methods and the getVDN *, setVDN *, etc., forms are for dealing with
non-inheritable ERGO methods.

1. public Iterator<FloraObject> getVDI foobar2(Object arg1, Object arg2)

public Iterator<FloraObject> getVDN foobar2(Object arg1, Object arg2)

Obtain all values for the F-logic method invocation foobar2(arg1,arg2).

2. public boolean setVDI foobar2(Object arg1, Object arg2, Vector value)

public boolean setVDN foobar2(Object arg1, Object arg2, Vector value)

Add a set of methods specified in the parameter value for the method invocation
foobar2(arg1,arg2).

3. public boolean setVDI foobar2(Object arg1, Object arg2, Object value)

public boolean setVDN foobar2(Object arg1, Object arg2, Object value)

A simplified interface when only one value is to be added.

4. public boolean deleteVDI foobar2(Object arg1, Object arg2, Vector value)

public boolean deleteVDN foobar2(Object arg1, Object arg2, Vector value)

Delete a set of values from foobar2(arg1,arg2). The set is given by the vector pa-
rameter value.

5. public boolean deleteVDI foobar2(Object arg1, Object arg2, Object value)

public boolean deleteVDN foobar2(Object arg1, Object arg2, Object value)

A simplified interface for deleting a single value.

6. public boolean deleteVDI foobar2(Object arg1, Object arg2)

public boolean deleteVDN foobar2(Object arg1, Object arg2)

Delete all values for the method invocation foobar2(arg1,arg2).

For Boolean and procedural methods, the generated methods are similar except that there
is only one version for the set and delete methods. In addition, Boolean inheritable methods
use the getBDI *, setBDI *, etc., form, while non-inheritable methods use the getBDN *, etc.,
form. Procedural methods use the getPDI *, getPDN *, etc., forms. For instance,

1. public boolean getBDI foobar3()

public boolean getBDN foobar3()

public boolean getPDI foobar3()

public boolean getPDN foobar3()

2. public boolean setBDI foobar3()

public boolean setBDN foobar3()

Portions Copyright c© 2013–2017 Coherent Knowledge 7

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public boolean setPDI foobar3()

public boolean setPDN foobar3()

3. public boolean deleteBDI foobar3()

public boolean deleteBDN foobar3()

public boolean deletePDI foobar3()

public boolean deletePDN foobar3()

In addition, the methods to query the ISA hierarchy are available:

• public Iterator<FloraObject> getDirectInstances()

• public Iterator<FloraObject> getInstances()

• public Iterator<FloraObject> getDirectSubClasses()

• public Iterator<FloraObject> getSubClasses()

• public Iterator<FloraObject> getSuperClasses()

• public Iterator<FloraObject> getDirectSuperClasses()

These methods apply to the java proxy object that corresponds to the F-logic class person.

All these methods are generated automatically by executing the following ERGO query (de-
fined in the javaAPI package). All arguments in the query must be bound:

// write(?Class,?Module,?ProxyClassFileName).

?- write(foo,example,’myproject/foo.java’).

The first argument specifies the class for which to generate the methods, the file name tells
where to put the Java file for the proxy object, and the model argument tells which ERGO

model to load this program to. The result of this execution will be the file foo.java which
should be included with your java program (the program that is going to interface with ERGO).
Note that because of the Java conventions, the file name must have the same name as the
class name. It is important to remember, however, that proxy methods will be generated only
for those F-logic methods that have been declared using signatures.

Let us now come back to our program flogic basics.flr for which we want to use the high-
level API. Suppose we want to query the person class. To generate the proxy declarations for
that class, we create the file person.java for the module basic mod as follows.

?- load{’examples/flogic_basics’>>basic_mod}.

?- load{javaAPI}.

?- write(person,basic_mod,’examples/person.java’)@\prolog

The write method will create the file person.java shown below. The methods defined in
person.java are the class constructors for person, the methods to query the ISA hierarchy,
and the “get”, “set” and “delete” methods for each method and attribute declared in the
ERGO class person. The parameters for the “get”, “set” and “delete” Java methods are the

Portions Copyright c© 2013–2017 Coherent Knowledge 8

CHAPTER 1. JAVA-TO-ERGO INTERFACES

same as for the corresponding ERGO methods. The first constructor for class person takes a
low-level object of class javaAPI.src.FloraObject as a parameter. The second parameter is
the ERGO module for which the proxy object is to be created. The second person-constructor
takes F-logic object Id instead of a low-level FloraObject. It also takes the module name, as
before, but, in addition, it takes a session for a running ERGO instance. The session parameter
was not needed for the first person-constructor because FloraObject is already attached to
a concrete session.

It can be seen from the form of the proxy object constructors that proxy objects are attached
to specific ERGO modules, which may seem to go against the general philosophy that F-logic
objects do not belong to any module — only their methods do. On closer examination,
however, attaching high-level proxy Java objects to modules makes perfect sense. Indeed, a
proxy object encapsulates operations for manipulating F-logic attributes and methods, which
belong to concrete ERGO modules, so the proxy object needs to know which module it operates
upon.

person.java file

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class person {

public FloraObject sourceFloraObject;

// proxy objects’ constructors

public person(FloraObject sourceFloraObject, String moduleName) { ... }

public person(String floraOID,String moduleName, FloraSession session) { ... }

// ISA hierarchy queries

public Iterator<FloraObject> getDirectInstances() { ... }

public Iterator<FloraObject> getInstances() { ... }

public Iterator<FloraObject> getDirectSubClasses() { ... }

public Iterator<FloraObject> getSubClasses() { ... }

public Iterator<FloraObject> getDirectSuperClasses() { ... }

public Iterator<FloraObject> getSuperClasses() { ... }

// Java methods for manipulating methods

public boolean setVDI_age(Object value) { ... }

public boolean setVDN_age(Object value) { ... }

public Iterator<FloraObject> getVDI_age(){ ... }

public Iterator<FloraObject> getVDN_age(){ ... }

public boolean deleteVDI_age(Object value) { ... }

public boolean deleteVDN_age(Object value) { ... }

public boolean deleteVDI_age() { ... }

public boolean deleteVDN_age() { ... }

public boolean setVDI_salary(Object year,Object value) { ... }

Portions Copyright c© 2013–2017 Coherent Knowledge 9

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public boolean setVDN_salary(Object year,Object value) { ... }

public Iterator<FloraObject> getVDI_salary(Object year) { ... }

public Iterator<FloraObject> getVDN_salary(Object year) { ... }

public boolean deleteVDI_salary(Object year,Object value) { ... }

public boolean deleteVDN_salary(Object year,Object value) { ... }

public boolean deleteVDI_salary(Object year) { ... }

public boolean deleteVDN_salary(Object year) { ... }

public boolean setVDI_hobbies(Vector value) { ... }

public boolean setVDN_hobbies(Vector value) { ... }

public Iterator<FloraObject> getVDI_hobbies(){ ... }

public Iterator<FloraObject> getVDN_hobbies(){ ... }

public boolean deleteVDI_hobbies(Vector value) { ... }

public boolean deleteVDN_hobbies(Vector value) { ... }

public boolean deleteVDI_hobbies(){ ... }

public boolean deleteVDN_hobbies(){ ... }

public boolean setVDI_instances(Vector value) { ... }

public boolean setVDN_instances(Vector value) { ... }

public Iterator<FloraObject> getVDI_instances(){ ... }

public Iterator<FloraObject> getVDN_instances(){ ... }

public boolean deleteVDI_instances(Vector value) { ... }

public boolean deleteVDN_instances(Vector value) { ... }

public boolean deleteVDI_instances(){ ... }

public boolean deleteVDN_instances(){ ... }

public boolean setVDI_kids(Vector value) { ... }

public boolean setVDN_kids(Vector value) { ... }

public Iterator<FloraObject> getVDI_kids(){ ... }

public Iterator<FloraObject> getVDN_kids(){ ... }

public boolean deleteVDI_kids(Vector value) { ... }

public boolean deleteVDN_kids(Vector value) { ... }

public boolean deleteVDI_kids(){ ... }

public boolean deleteVDN_kids(){ ... }

public boolean setVDI_believes_in(Vector value) { ... }

public boolean setVDN_believes_in(Vector value) { ... }

public Iterator<FloraObject> getVDI_believes_in(){ ... }

public Iterator<FloraObject> getVDN_believes_in(){ ... }

public boolean deleteVDI_believes_in(Vector value) { ... }

public boolean deleteVDN_believes_in(Vector value) { ... }

public boolean deleteVDI_believes_in(){ ... }

public boolean deleteVDN_believes_in(){ ... }

}

Stage 3: Writing Java applications that use the high-level API. The following
program (flogicbasicsExample.java) shows several queries that use the high-level interface.
The class person.java is generated at the previous stage. The methods of the high-level
interface operate on Java objects that are proxies for ERGO objects. These Java objects are
members of the class javaAPI.src.FloraObject. Therefore, before one can use the high-level

Portions Copyright c© 2013–2017 Coherent Knowledge 10

CHAPTER 1. JAVA-TO-ERGO INTERFACES

methods one need to first retrieve the appropriate proxy objects on which to operate. This is
done by sending an appropriate query through the method ExecuteQuery—the same method
that was used in the low-level interface. Alternatively, person-objects could be constructed
using the 3-argument proxy constructor, which takes F-logic oids.

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class flogicbasicsExample {

public static void main(String[] args) {

/* Initializing the session */

FloraSession session = new FloraSession();

System.out.println("Flora session started");

String fileName = "examples/flogic_basics"; // must be a valid path

/* Loading the flora file */

session.loadFile(fileName,"basic_mod");

// Retrieving instances of the class person through low-level API

String command = "?X:person@basic_mod.";

System.out.println("Query:"+command);

Iterator<FloraObject> personObjs = session.ExecuteQuery(command);

/* Print out person names and information about their kids */

person currPerson = null;

while (personObjs.hasNext()) {

FloraObject personObj = personObjs.next();

// Elevate personObj to the higher-level person-object

currPerson =new person(personObj,"basic_mod");

/* Set that person’s age to 50 */

currPerson.setVDN_age("50");

/* Get this person’s kids */

Iterator<FloraObject> kidsItr = currPerson.getVDN_kids();

while (kidsItr.hasNext()) {

FloraObject kidObj = kidsItr.next();

System.out.println("Person: " + personObj + " has kid: " +kidObj);

person kidPerson = null;

// Elevate kidObj to kidPerson

kidPerson = new person(kidObj,"basic_mod");

/* Get kidPerson’s hobbies */

Iterator<FloraObject> hobbiesItr = kidPerson.getVDN_hobbies();

Portions Copyright c© 2013–2017 Coherent Knowledge 11

CHAPTER 1. JAVA-TO-ERGO INTERFACES

while(hobbiesItr.hasNext()) {

FloraObject hobbyObj = hobbiesItr.next();

System.out.println("Kid:"+kidObj + " has hobby:" +hobbyObj);

}

}

}

FloraObject age;

// create a person-object directly by supplying its F-logic OID

// father(mary)

currPerson = new person("father(mary)", "example", session);

Iterator<FloraObject> maryfatherItr = currPerson.getVDN_age();

age = maryfatherItr.next();

System.out.println("Mary’s father is " + age + " years old");

// create a proxy object for the F-logic class person itself

person personClass = new person("person", "example", session);

// query its instances through the high-level interface

Iterator<FloraObject> instanceIter = personClass.getInstances();

System.out.println("Person instances using high-level API:");

while (instanceIter.hasNext())

System.out.println(" " + instanceIter.next());

session.close();

System.exit();

}

}

1.3 Executing Java Application Programs with ERGO

To run Java programs that interface with ERGO, follow the following guidelines.

• Place the files flogicsbasicsExample.java (the program you have written) and
person.java (the automatically generated file) in the same directory and compile
them using the javac command. Add the jar-files containing the API code and
interprolog.jar to the Java classpath:

– FLORADIR/java/flora2java.jar

– FLORADIR/java/interprolog.jar

FLORADIR here should be replaced with the value of the variable FLORADIR, which
is set by the scripts flora settings.sh (Linux/Mac) or flora settings.bat (Win-
dows), as mentioned in Section 1.1 on page 1.

• Generally, Java programs that call ERGO should be invoked using the following com-
mand. For Unix-like systems (Linux, Mac, etc.), change %VAR% to $VAR:

Portions Copyright c© 2013–2017 Coherent Knowledge 12

CHAPTER 1. JAVA-TO-ERGO INTERFACES

%JAVA_BIN%\java -DPROLOGDIR=%PROLOGDIR%

-DFLORADIR=%FLORADIR%

-Djava.library.path=%PROLOGDIR%

-classpath %MYCLASSPATH% flogicbasicsExample

The above command uses several shell variables, which are explained below. Instead of
using the variables, one can substitute their values directly.

JAVA BIN: This variable should point to the directory containing the java and javac

executables of the JDK.

PROLOGDIR: This variable should be set to the directory containing the XSB executable.

FLORADIR: This variable should be set to the directory containing the ERGO system.

MYCLASSPATH: This variable should include the jar files containing the API
code, i.e., .../java/flora2java.jar and file .../java/interprolog.jar,
plus the above flogicbasicsExample class. For instance, it can be set to
%CLASSPATH%;FLORADIR/java/flora2java.jar;FLORADIR/java/interprolog.jar;

flogicbasicsExample. For Linux and Mac, use ’:’ instead of ’;’ as a separator. As
before, FLORADIR should be replaced with a proper value, as explained above.

• Some Java applications may employ additional shell variables. For instance, the program
that uses the low-level API in Section 1.1 (in Step 2) has the line

String fileName = System.getProperty("INPUT FILE");

which means that it expects the shell variable INPUT FILE to be set. In this particular
case, it expects that variable to have the address of the flogic basics.flr ERGO file,
which it then loads. Therefore, the java command shown above would also need this
parameter:

-DINPUT_FILE=%INPUT FILE%

In general, one such additional parameter is needed for each property that the Java
application queries using the getProperty() method.

1.4 Summary of the Variables Used by the Interface

The Java-ERGO interface needs the following shell variables to be set:

• JAVA HOME - this is normally set when you install Java. If not, set this variables manually.

• The following variables can be set by executing the scripts flora settings.bat (Win-
dows) or flora settings.sh (Linux/Mac) located in flora2/java/:

– FLORADIR — the path to the ERGO installation directory.

– PROLOGDIR — the path to the folder containing XSB executable.

Portions Copyright c© 2013–2017 Coherent Knowledge 13

CHAPTER 1. JAVA-TO-ERGO INTERFACES

If you need to set the above variables in some other way, look inside the above scripts
to get the exact values these variables should be set to.

• The following variable is set by the scripts unixVariables.sh or
windowsVariables.bat:

– JAVA BIN — the directory where Java executables are (java, javac).

If you need to set this variable without running the aforesaid script, you need to know
the correct value for that variable. The simplest way is to execute the script and then
check the value of environment variable JAVA BIN.

1.5 Building the Prepackaged Examples

Sample applications of the Java-ERGO interface are found in the java/API/examples

folder. To build the code for the interface, use the scripts build.bat or build.sh (or
build.bat on Windows) in the java/API folder. To build the the examples, use the scripts
buildExample.sh or buildExample.bat in the java/API/examples folder, whichever ap-
plies. For instance, to build the flogicbasicsExample example, use these commands on
Linux, Mac, and other Unix-like systems:

cd examples

buildExample.sh flogicbasicsExample

On Windows, use this:

cd examples

buildExample.bat flogicbasicsExample

To run the demos, use the scripts runExample.sh or runExample.bat in the
java/API/examples folder. For instance, to run the flogicbasicsExample, use this com-
mand on Linux, Mac, and the like:

runExample.sh flogicbasicsExample

On Windows, use this:

runExample.bat flogicbasicsExample

Portions Copyright c© 2013–2017 Coherent Knowledge 14

Chapter 2

ERGO-to-Java Interface: Calling
Java from ERGO

by Michael Kifer

This chapter describes the API for opening some standard Java widgets from within ERGO

rules. This API also allows one to call arbitrary Java programs and thereby use ERGO for
scripting Java applications.

The ERGO-to-Java API works both when ERGO runs as a standalone application and when it
is under the control of Ergo Studio. The API calls should work the same in either environment.

2.1 General

The ERGO-to-Java API is available in the system module \e2j and calling anything in this
module will load that module. If, however, for some reason it is necessary to load this module
without executing any operations, one can accomplish this by calling

• ensure loaded@\e2j.

The following additional general API calls are available:

• System[mode->?Mode] - ?Mode will be bound to one of the following:

– studio – if ERGO runs as part of Ergo Studio.

– [ergo2java,gui] – if ERGO runs as a standalone mode in an environment that
supports graphics. This is usually the case when one invokes ERGO in a command
window on a personal computer.

– [ergo2java,nogui] – this is usually the case when ERGO runs in a non-graphical
environment, such as a dumb terminal or a command window opened on a remote
server. In a nogui situation, none of the widgets (windows, dialogs, etc.) will be
available. However, the dialog boxes will be simulated through a command-line
interface.

15

CHAPTER 2. ERGO-TO-JAVA INTERFACE

• System[restart] – restarts the Java subprocess, if it was killed and is needed again.
This is required very rarely: for instance, when the Java subprocess was killed outside
of ERGO (e.g., via the Task Manager or System Monitor). Java is also killed when \end
is executed at the ERGO prompt.

• System[path(studioLogFile)->?File] – also a rarely used feature. The variable
?File gets bound to the location of the Studio log file. This calls fails outside of
the studio environment. In the future, this API call will be extended to include other
file locations that might be deemed useful in the future.

2.2 Dialog Boxes

This part of the API allows the user to pop up various dialog boxes and the find out which
button was clicked by the user. Several types of dialog boxes are supported:

• Dialog[show(?Question)->?Answer] – pops up a dialog box that asks the user a
question and provides an input text field plus the buttons OK and Cancel. If the user
clicks Cancel the call fails. Otherwise, if OK is clicked, ?Answer gets bound to whatever
the user typed in the input field.

• Dialog[showOptions(?Title,?Message,?Buttons)->?ChosenButton] – opens up a
dialog box where the user is presented with a number of buttons to click on. Here
?Title must be bound to an atom—it will be the title of the window; >Message is an
atom that contains the message to be displayed to the user (e.g., “Please click a suitable
button”); and ?Buttons is a list of labels to appear on the buttons presented as the
available choices (e.g., [Milk,Bread,Honey]).

• Dialog[show(?Title,?Message)] – pops up a dialog box that shows a message
(?Message) and waits until the user clicks OK. ?Title is the title of the dialog box.

• Dialog[chooseFile->?File] – pops up a file chooser. ?File gets bound to the file
chosen by the user.

• Dialog[chooseFile(?ExtensionsList)->?File] – like the above, but also takes a
parameter that represents a list of file extensions. Only the files with that extensions
mentioned in the list are shown to the user in the file chooser.

2.3 Windows

This part of the API supports opening, closing, and other operations on windows.

• Window[open(?WindTitle,?Tooltip)->?Window] – pops up a new window with the
title ?WindTitle and the tooltip ?Tooltip. The tooltip is appears when the mouse
rests over the window. The variable ?Window gets bound to the Id of the newly created
window. This Id will need to be passed to other API calls that manipulate windows, so
the user must usually store these Ids in some predicates.

Portions Copyright c© 2013–2017 Coherent Knowledge 16

CHAPTER 2. ERGO-TO-JAVA INTERFACE

• Window[setSize(?Win,?Columns,?Rows)] – changes the size of the window so it will
have the given number of columns and rows. The system will then try to adjust the
window (whose Id is passed in the first argument ?Win) to approximate the requested
size.

• Window[close(?Window)] – closes the specified window.

• Window[alive(?Window)] – tells if the window is alive (i.e., not closed by the user—
either programmatically or by clicking the x button in the corner of the window).

2.4 Printing to a Window

The following describes how to print to a previously open window and how to erase the
window contents.

• Window[clear(?Window)] – erases the contents of the given window.

• Window[print(?Window,?Text)] – prints ?Text to a given window. ?Text specifies
what to print and how. Several colors are supported (black, red, brown, green, purple,
blue, magenta, orange, and default), as well as a few faces (italic, bold, boldital).

?Text is either a text descriptor or a list of text descriptors, where a text descriptor is

– a Hilog term; or

– modifier(Hilog term)

Here modifier is one of the aforesaid colors or faces. Not all faces may be available for
the default fonts on your system so, say, boldital may appear as italic ot as bold.
Likewise, colors may look different on different screens.

Note that if you want to print a term like red(tomato) then you would have to wrap
it in one of the above modifiers, like default(red(tomato)) (to print red(tomato)

in the default color—usually black) or green(red(tomato)) (to print red(tomato)).
Otherwise, if red(tomato) is not wrapped as described, tomato will be printed instead.

Examples. Let us assume that window with Id 3 is open. Then:
Window[print(3,magenta(’this is red(herring), 1lb’))]@\e2j will print this is
red(herring), 1lb.
Window[print(3,[magenta(’this is a ’), green(2), italic(’ pound ’),

red(herring)])]@\e2j will print: this is a 2 pound herring.

2.5 Scripting Java Applications

The java scripting API allows the user to load Java jar-files, invoke methods that exist in the
public classes of those jar-files, and process the results.

• System[addJar(?Jar)] – load the specified jar-file into the system.

More details will appear in a later version of this document.

Portions Copyright c© 2013–2017 Coherent Knowledge 17

Chapter 3

Querying SQL Databases
by Michael Kifer

This chapter describes the API for SQL queries against relational databases.

3.1 Connecting to a Database

The ERGO-to-SQL API is available in the system module \sql and calling anything @\sql will
load that module. If, for some reason, it is necessary to load this module without executing
any operations, one can accomplish this by calling

• ensure loaded@\sql.

Prior to performing any operation on an SQL database the user must open a connection to
that database. ERGO supports two database drivers:

• odbc: the general driver to all relational databases that support the ODBC protocol.
All major database products and open-source databases support this protocol.1 The
user must be familiar with the basics of setting up ODBC data sources (called DSNs),
which specify database drivers and the target databases.

• mysql: the native driver for MySQL databases (for Linux, Mac, Windows (64 bit)).

The commands to connect to a database for these two drivers are slightly different.

• The ODBC driver:2

odbc[open(?ConnectId,?DSN,?User,?Password)]@\sql.
Here ?ConnectId must be bound to a Prolog atom (note: an atom, not a variable) that
will henceforth identify the connection. ?DSN must be bound to an ODBC DSN (data
source name), and ?User and ?Password must be the user name and the password to

1 There have been serious problems with ODBC support on Linux and Mac for MySQL server 5.7.
2 The ODBC driver for MySQL 5.7 has a number of problems on Linux and Mac, so we recommend to use

MySQL 5.6, if ODBC is required.

18

CHAPTER 3. QUERYING SQL DATABASES

be used to log into the database—both must be Prolog atoms.
Example: odbc[open(id1,mydbn,me,mypwd)]@\sql.

• The MySQL driver (Linux, Mac, Windows (64 bit)):
mysql[open(?ConnectId,?Server,?Database,?User,?Password)]@\sql.
?Server must be bound to the address of the desired database server. Usually this is
an IP address such as 123.45.67.89 (with optional port number, e.g., 123.45.67.89:6666)
or a domain name, like abc.example.com — again with optional port number. On a
local machine, the server would usually be just localhost.

The meaning of the other parameters is the same as for the ODBC driver.

Example: mysql[open(id2,localhost,test,me,mypwd)]@\sql.
Note that one can use the two drivers simultaneously for different connections. However,
the connection Ids must be distinct whether the same or different drivers are used. A
connection Id can be reused if it was previously closed (see below).

When done with the database, it is recommended to close the connection to that database
for two reasons:

• To avoid hitting the limit of 200 on the number of databases that one can work with at
the same time.

• To release the resources allocated by the OS to work with that open connection.

The syntax for closing connections is

?ConnectId[close]@\sql.

For example, id2[close]@\sql.

3.2 Queries

The ERGO-to-SQL API provides a simple query interface to send SQL queries (SELECT),
updates (INSERT, DELETE, etc.), schema definition (CREATE), and other commands.

• ?ConnectId[query(?QueryId,?QueryList,?ReturnList)]@\sql.
?ConnectId is the Id of a previously open (and not closed) connection. ?QueryId must
be bound to an atom that will represent the query statement that will be created as a
result of this command. ?QueryList is a list that must concatenate into a Prolog atom
that forms a valid SQL statement. Components of the list can be variables and terms,
and in this way the query can be constructed at run time. ?ReturnList is a list of
variables that must correspond to the list of items in the SELECT query. For other types
of SQL statements, ?ReturnList should be an empty list.

Examples: Assume that our database has a table Person(name char(40),addr

char(100),age integer). Then the following is a legal query:

Portions Copyright c© 2013–2017 Coherent Knowledge 19

CHAPTER 3. QUERYING SQL DATABASES

?- ?Tbl=Person, ?Age = 33,

id1[query(qid,[’SELECT name, addr FROM ’,?Tbl, ’ WHERE age=’, ?Age],

[?Name,?Address]

)

]@\sql.

Observe how the SQL query here is constructed at runtime: the table and the value of
age are bound only when the above ERGO query is executed.

Here is an example of an update statement:

id2[query(qa,

[’insert into Person(name,addr,age)

values("mike","unknown",NULL)’],

[]

)

]@\sql.

• Preparing queries.
Frequent databases queries can be precompiled and optimized once and then executed
multiple times, which is the recommended modus of operandi. (The previously described
query interface is more flexible, but less efficient; it is typically used for infrequent queries
or queries that must be constructed at run time, as in the above example.)

For frequent queries that are known in advance, a two-step process is used. First, the
query is prepared (i.e., compiled and optimized) and then executed. The preparation
and execution of such queries allows certain level of flexibility by letting the user to
place question marks ? in lieu of some of the constants (these cannot be column names,
table names, variable names, etc. — only regular constants). These question marks can
be replaced by actual constants at the query execution time.

– ?ConnectId[prepare(?QueryId,?QueryList)]@\sql.
The meaning of the parameters is the same as before.

Example:

id1[prepare(qid,[’SELECT T.addr FROM ’, Person,

’ T where T.name = ? and T.age = ?’]

)

]@\sql.

The query Id qid can then be used to execute the above query, as shown below.

– ?QueryId[execute(?BindList,?ReturnList)]@\sql.
?QueryId must be bound to the query Id of a previously prepared query.
?BindList must be a list of values that is supposed to be substituted for the
?’s in the prepare command; the ?’s are substituted in the order in which they
appear in the prepare statement.

Example:

qid[execute([mike,44],[?Address])]@\sql.

Portions Copyright c© 2013–2017 Coherent Knowledge 20

CHAPTER 3. QUERYING SQL DATABASES

• Closing query Ids.
Like database connections, query Ids must be closed in order to release the resources
that the OS allocates to the query. There is also a limit of 2000 on the number of active
queries, which can be easily reached in applications that query the database heavily.
The command for closing the query Ids is:

?QueryId[qclose]@\sql.

For instance,

qid[qclose]@\sql.

Finally, we need to mention that when a NULL value is returned as a result of a query, it
is returned as a Prolog term NULL()@\plg. This implies that if such a term is used as an
argument to a literal that is to be inserted into the database, it will be converted to the NULL
value.

Portions Copyright c© 2013–2017 Coherent Knowledge 21

Chapter 4

Querying SPARQL Endpoints
by Paul Fodor and Michael Kifer

This chapter describes the ERGO interface to SPARQL endpoints (i.e., remote processors that
support the SPARQL protocol—both querying and update statements), which is based on
Apache Jena. It should be noted from the outset that several triple stores implement SPARQL
extensions that go well beyond the SPARQL 1.1 protocol and Jena might not support some of
them. The user will see syntax errors whenever such extensions are used in SPARQL queries
or update statements.

4.1 General

The ERGO-to-SPARQL API is available through the ERGO system module \sparql and
calling anything @\sparql will load that module. If, however, for some reason it is necessary
to load this module without executing any operations, one can accomplish this by calling

• ensure loaded@\sparql.

Prior to performing any queries against a SPARQL endpoint the user must open a connection
to that endpoint. A connection is identified via ERGO symbols, like MyConnection123, which
are chosen by the user. An endpoint is usually capable of supporting either queries (query
endpoint) or updates (update endpoint), but not both.

• System[open(?ConnectionId,?EndpointURL,?Username,?Password)]@\sparql.
Binds ?ConnectionId to a query endpoint specified by the ?EndpointURL URL. (See
about update endpoints below.) ?ConnectionId must be bound to an ERGO symbol
(Prolog atom); it is a connection identifier, and it is chosen by the user. After opening,
the connection Id can be used to query the endpoint without re-authentication.
?EndpointURL must be the URL of a valid query endpoint to which the user wishes
to connect. It must be an atom. Username, and ?Password must be bound to Prolog
atoms (ERGO symbols).
Example:

22

CHAPTER 4. QUERYING SPARQL ENDPOINTS

System[open(DBPEDIAConnectionID,’http://dbpedia.org/sparql’,’’,’’)]@\sparql.
Binds the symbol DBPEDIAConnectionID to the given query endpoint with empty
credentials (no user id or password). If the connection fails due to an error at the
endpoint URL or the user credentials, an error will be issued. If the connection is
successful, the query will succeed and one can use DBPEDIAConnectionID to query the
specified endpoint.

• System[open(update(MyConnection),’http://localhost:7200/repositories/test/

statements’,’’,’’)]@\sparql.
Due to the peculiarities of the SPARQL 1.1 protocol, triple stores usually maintain
different endpoints (with different URLs!) for query and update operations. So, to
both query and update the same triple store one must open two connections. The
above form of the open statement is used if one wants to connect to an update endpoint.

• System[connectionType(?ConnectionId) -> ?Type]@\sparql.
Sometimes one might need to test programmatically if a particular connection is already
open and get its connection type. This can be accomplished with the above call.
If the connection is open, ?Type gets bound to query or update—whichever applies. If
the connection is not open, the call fails.

• System[connectionURL(?ConnectionId) -> ?URL]@\sparql.
Like connectionType but returns the URL of the connection’s target endpoint instead
of the connection’s type.

• System[close(?ConnectionId)]@\sparql. ConnectionId must be an id of a previ-
ously open (and not yet closed) connection to a SPARQL end point. The method closes
the connection and releases the space it holds.
Example:
System[close(DBPEDIAConnectionID)]@\sparql.

It should be noted that closing a connection is usually not necessary because each connection
involves a relatively small memory overhead and the memory is released when ERGO exits.
This only becomes a problem if the user opens (and keeps open) hundreds of thousands
connections. The only real inconvenience with keeping many connections open is that one
must keep all the names distinct.

Finally, it should be kept in mind that all the definitions and examples in this chapter show
ERGO statements in the context of a query or of a rule body. It should be clear that these
statements cannot be put in rule heads. If one wants to execute them from within a file, they
have to be prefixed with a ?-, as usual. For instance,

?- System[close(DBPEDIAConnectionID)]@\sparql.

4.2 Queries and Updates

The ERGO-to-SPARQL API supports several kinds of queries: select, selectAll,
construct, ask, describe, describeAll, and update. Recall that SPARQL normally uses
different endpoints for queries and updates. Accordingly, the first six statements utilize

Portions Copyright c© 2013–2017 Coherent Knowledge 23

CHAPTER 4. QUERYING SPARQL ENDPOINTS

connections that were previously open and bound to SPARQL query endpoints. The last
(update) statement utilizes connections that are bound to update endpoints.

• Query[select(?ConnectionId,?Query)->?Result]@\sparql
runs a SPARQL SELECT ?Query and successively binds ?Result to each answer via
backtracking. The ?Query must be an ERGO atom or a list. In the former case, the
atom must form a valid SPARQL query. In the latter case, the list elements (which
typically are ERGO atoms and variables) are converted into atoms and concatenated
to form a valid SPARQL query. If the query is not valid, a syntax error is issued.
Forming a query using lists is usually necessary only if one wants to pass values through
variables from ERGO to the query. The first example below does not pass any variables
to the query, so we represent the query simply as an atom. The second example is more
interesting, as it passes the ERGO variable ?Subj into the query and so we use a list.
Example:
Query[select(DBPEDIAConnectionID,’SELECT * WHERE {?x ?r ?y} LIMIT 2’)

-> ?Result]@\sparql.
Output :

?Result=["http://www.openlinksw.com/virtrdf-data-formats#default-iid"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri]

?Result=["http://www.openlinksw.com/virtrdf-data-formats#default-iid-nullable"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri]

Example:
?Subj="http://dbpedia.org/ontology/person"^^\iri,

Query[select(DBPEDIAConnectionID,

[’SELECT * WHERE {’, ?Subj, ’?r ?y} LIMIT 2’])

-> ?Result]@\sparql.
Note that this query passes the binding from the variable ?Subj into the query. It is
important to not confuse ERGO variables, like ?Subj, with SPARQL variables, like
?r and ?y, in the above query. From the ERGO perspective, ?Subj is a real logical
variable and its binding is substituted into the list that forms the query. Without
knowing anything about the actual SPARQL variables, ERGO nevertheless “magically”
successively binds the variable ?Result to the lists of pairs [r1, y1], [r2, y2], ..., [rk, yk],
where each ri, yi are the answers returned by SPARQL. In contrast, ?r and ?y are seen
by ERGO simply as sequences of characters that form the string ’?r ?y} LIMIT 2’

that becomes part of the query after the list is concatenated. In fact, ERGO does not
even look inside that string. From SPARQL perspective, on the other hand, ?r and
?y are real variables through which it passes the answers to the query. In contrast,
SPARQL does not see the ERGO variable ?Subj at all, as the binding for that variable
becomes part of the query list before the actual query is formed and sent to SPARQL
processor.

• Query[selectAll(?ConnectionId,?Query)->?ResultList]@\sparql
runs a SPARQL query, similarly to select, except that all results are returned at once

Portions Copyright c© 2013–2017 Coherent Knowledge 24

CHAPTER 4. QUERYING SPARQL ENDPOINTS

in the list ?ResultList. In contrast, the select query returns the results from the query
one-by-one. Since we do not pass any values from ERGO to the query, we represent the
query simply as an atom.
Example:
Query[selectAll(DBPEDIAConnectionID,’SELECT * WHERE {?x ?r ?y} LIMIT 2’)

-> ?ResultList]@\sparql.
Output :

?Result=[["http://www.openlinksw.com/virtrdf-data-formats#default-iid"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri],

["http://www.openlinksw.com/virtrdf-data-formats#default-iid-nullable"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri]]

• Query[construct(?ConnectionId,?Query)->?Result]@\sparql
runs a SPARQL CONSTRUCT query. As before, ?Query must be bound either to an atom
(which must be a valid CONSTRUCT query) or to a list, which must concatenate into
such a valid query. The latter, again, is used to pass values to the query via variables.
The CONSTRUCT query is an alternative query to SELECT, that instead of returning
a table of results returns an RDF graph. The resulting RDF graph is created by taking
the results of the equivalent SELECT query and filling in the values of variables that
occur in the CONSTRUCT clause. The resulting graph (a list of triples) is then bound
to ?Result.
Example:
Query[construct(DBPEDIAConnectionID,’CONSTRUCT <http://example3.org/person>

?r ?y WHERE ?x ?r ?y LIMIT 2’)->?Res]@\sparql.

Note that the query refers to a URL constant <http://example3.org/person> using
the SPARQL syntax for URLs (angle brackets). This syntax differs from the syntax
for URLs in ERGO, which is "http://example3.org/person"ˆˆ\iri. Note that in
the second example for SELECT we passed an IRI to the query using the ERGO syn-
tax. ERGO IRIs are converted to SPARQL URLs automatically. However, in that
example, we could as well use an atom that represents the desired URL. For instance,
?Subj = ’<http://dbpedia.org/ontology/person>’.

• Query[ask(?ConnectionId,?Query)]@\sparql
runs a SPARQL ASK query. An ASK query tests whether or not a query pattern has
a solution. It does not return any results and simply succeeds or fails.
Example:
Query[ask(DBPEDIAConnectionID,’ASK {?x ?prop "Alice"}’)]@\sparql.
Output : ’Yes’ because DBpedia has a matching triple.

• Query[describe(?ConnectionId,?Query)->?Result]@\sparql
runs a SPARQL DESCRIBE query, which returns descriptions of RDF resources.
These descriptions are bound to ?Result.
Example:
Query[describe(DBPEDIAConnectionID,’DESCRIBE ?y WHERE {?x ?r ?y} LIMIT

1’)->?Result]@\sparql.

Portions Copyright c© 2013–2017 Coherent Knowledge 25

CHAPTER 4. QUERYING SPARQL ENDPOINTS

• Query[update(?ConnectionId,?Query)]@\sparql
runs update operations on connection ?ConnectionId, which must be bound to an
update endpoint. The operations are insert, delete, modify, load, and clear (described
in the standard: https://www.w3.org/TR/sparql11-update/). The update requires
an update-enabled RDF triple server (e.g., GraphDB, Jena TDB, Virtuoso Universal
Server).
Examples:
Query[update(ServerConnectionID,

’PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA { <http://example/john> dc:title "A new book" ;

dc:creator "A.N.Other" . }’)]@\sparql.
Query[update(ServerConnectionID,

’PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA { <http://example/john> dc:title "A new book" ;

dc:creator "A.N.Other" . }’)]@\sparql.

Here ServerConnectionID must be an endpoint that was previously open on an update
endpoint.

In addition, there are constructAll and describeAll queries, which are related to
construct and describe queries the same way selectAll is related to select: the variable
?Result gets bound to a list that contains all answers rather than one answer at a time.

Additional examples of queries to standard endpoints (e.g., DBpedia and Wikidata SPARQL
endpoints) are provided in Coherent’s Ergo Suite Tutorial, in the section on ERGO connectors,
at https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/home/

ergo-connectors.

4.3 Creating Your Own Triple Store

A number of public SPARQL endpoints, such as DBpedia, exist in order to play with SPARQL
queries. However, if one wants to modify triples in the store and create endpoints, a local
(or a cloud) installation is needed. In this section, we provide the instructions for two triple
stores: GraphDB fro Ontotext and Apache’s Jena TDB with Fuseki server.

4.3.1 GraphDB

We found that GraphDB from Ontotext (http://graphdb.ontotext.com/) is one of the eas-
iest to install, maintain, and experiment with. This is a commercial triple store, but by regis-
tering (http://info.ontotext.com/graphdb-free-ontotext one can obtain a free license,
which supports all major features of the product for small projects. To install GraphDB, use
the installation package appropriate for your system. Below are the instructions for Ubuntu
Linux (Mint Linux with Cinnamon, to be precise).

After installing the graphdb-free-7.1.0.deb package (provided to you by Ontotext after
registering), you will find GraphDB in the Programming category in the Start menu. Choosing
GraphDB from the menu will open a console and a Firefox browser with a tab open on the

Portions Copyright c© 2013–2017 Coherent Knowledge 26

https://www.w3.org/TR/sparql11-update/
https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/home/ergo-connectors
https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/home/ergo-connectors
http://graphdb.ontotext.com/
http://info.ontotext.com/graphdb-free-ontotext

CHAPTER 4. QUERYING SPARQL ENDPOINTS

GraphDB workbench. If you don’t have Firefox installed, just head to localhost:7200 in
your favorite browser. The Workbench lets you create new triple stores (in the Admin menu),
put information into the store, and query it. Since we want to query our triple store using
ERGO, skip the query/update form: just use the Admin menu to create/administer your store.

Let’s suppose we created a triple store called Test. In response, GraphDB creates two
endpoints: http://localhost:7200/repositories/Test — a query endpoint and http:

//localhost:7200/repositories/Test/statements — an update endpoint. By opening
an ERGO query connection to the former endpoint and an update connection to the latter
you will be able to use ERGO to manage your own triple store!

4.3.2 Jena TDB

Jena TDB from Apache is an open source triple store with full support for the SPARQL
1.1 protocol. To install it, visit http://jena.apache.org/download/#jena-fuseki and
download the latest Apache Jena Fuzeki. As of this writing, the latest release is
apache-jena-fuseki-2.4.0.zip (or you can choose a tar.gz file).

Unzip the above file in a desired directory (say, TDB), change to the directory
TDB/apache-jena-fuseki-2.4.0/ and type

fuseki-server --update --mem /test

(fuseki-server.bat on Windows). This will create an in-memory triple store called test.
Since it is an in-memory store, any data inserted into it will be deleted when the Fuseki server
terminates (kill it by typing Ctrl-C). In addition, Fuseki will create two SPARQL endpoints:
a query endpoint at http://localhost:3030/test/query and an update endpoint at http:
//localhost:3030/test/update. Use these endpoints to perform operations on this triple
store via ERGO.

To create a persistent triple store, you need to create a subdirectory in
TDB/apache-jena-fuseki-2.4.0/, say MyTestDB and then start the Fuseki server like
this:

fuseki-server --update --loc=MyTestDB /test

Note that MyTestDB is the name of the directory in which to store the data while test is the
name of the service. So, the SPARQL endpoints for this persistent store would be the same
as in the previous example: http://localhost:3030/test/query and http://localhost:

3030/test/update.

You can manage this and other triple stores on this server by heading to the Fuseki workbench
site at localhost:3030 in your favorite browser.

To protect the triple stores with a password, edit the file
TDB/apache-jena-fuseki-2.4.0/run/shiro.ini and add users under the [users]

section. For instance,

[users]

its_me=its_my_pw

Portions Copyright c© 2013–2017 Coherent Knowledge 27

http://localhost:7200/repositories/Test
http://localhost:7200/repositories/Test/statements
http://localhost:7200/repositories/Test/statements
http://jena.apache.org/download/#jena-fuseki
http://localhost:3030/test/query
http://localhost:3030/test/update
http://localhost:3030/test/update
http://localhost:3030/test/query
http://localhost:3030/test/update
http://localhost:3030/test/update
localhost:3030

Chapter 5

Loading RDF and OWL files
by Paul Fodor and Michael Kifer

This chapter describes the ERGO translator and loader of RDF and OWL files (i.e., the
Resource Description Framework (RDF) and the Web Ontology Language (OWL) are families
of knowledge representation languages for authoring ontologies), which is based on Apache
Jena.

5.1 General

The ERGO-to-OWL API is available through the ERGO system module \owl and calling
anything @\owl will load that module. If, however, for some reason it is necessary to load
this module without executing any operations, one can accomplish this by calling

• ensure loaded@\owl.

The main predicate for translating and loading RDF and OWL files in Ergo is rdf load:

System[rdf load(?InputFileName, ?InputLangSyntax,

?OutputFormat, ?IriPrefixes, ?RdfStorage)]@\owl.

The parameters of this query are explained below. They are all input parameters and therefore
must be bound. The result of the translation is stored in a place indicated by the last
argument and also depends on the output format, as explained below (see the explanations
to ?RdfStorage) .

?InputFileName must be bound to an ERGO symbol (Prolog atom); it is an input file name
where the RDF or OWL file resides (this can be absolute or relative path). It is advisable that
the user uses forward slash as a delimiter. Backslash also works, but it should be doubled as
it needs to be escaped.

?InputLangSyntax must be bound to an ERGO symbol (Prolog atom); it is an input file syn-
tax: ’RDF/XML’, ’JSON-LD’ ’TURTLE’, ’TTL’ , ’N-TRIPLES’, ’NT’, ’N3’, or ’RDF/JSON’
(lowercase versions are also accepted).

28

CHAPTER 5. LOADING RDF AND OWL FILES

If ?InputLangSyntax is an empty atom ’’ then the input syntax is guessed from the file
extension.

?OutputFormat must be bound to fastload, predicates, or frames; it is a flag to select
between the output formats. The preferred format is fastload, as it is much more efficient
for large files.

?IriPrefixes must be bound to an ERGO symbol (Prolog atom) and be a sequence or rows,
ending with the newline character, where each row has the form prefix=URL:

’prefix1=URL

prefix2=URL2

...

prefixN-URL_N’

This parameter can be used to define prefixes for compact URIs (curi’s) used inside the
input RDF/OWL files. These prefixes will be added to the standard pre-defined prefixes rdf
(http://www.w3.org/1999/02/22-rdf-syntax-ns#), rdfs (http://www.w3.org/2000/01/
rdf-schema#), owl (http://www.w3.org/2002/07/owl#), and xsd (http://www.w3.org/
2001/XMLSchema#). If any of the standard prefixes rdf, rdfs, owl, or xsd are also defined in
?IriPrefixes, the latter override the default definitions.

?RdfStorage must be bound to an ERGO symbol (Prolog atom); it indicates where the
RDF translation should stored at run time. The nature of that storage depends on the
?OutputFormat argument. If ?OutputFormat is bound to fastload then ?RdfStorage is
the name of a special ERGO storage and the information in that storage is accessible via
the special primitive fastload{...} — see the ERGO Programmer’s Manual. The example
below illustrates that process.

Example:
?- System[rdf load(’wine.owl’, ’RDF/XML’, fastload,

’’, rdfStorage123)]@\owl,
fastquery{rdfStorage123, ?P(?S,?O)}.

will retrieve all the triples from the file wine.owl. Here ?P will be bound to the property part
of RDF triples, ?S to subjects, and ?O to objects.

The fastload format is a tad harder to query, but it is orders of magnitude faster than the
other two formats: predicates and frames. Therefore it is typically the preferred way to
access OWL and RDF. In case of the other two formats, RDF triples are translated into
ERGO predicate-shaped facts of the form prop(subj,obj) or frame-shaped facts of the form
subj[prop->obj]. The ?RdfStorage parameter in that case is the name of the ERGO module
into which these facts are loaded. Since it is a regular module, the facts there can be queried
in the usual way, e.g., ?p(?s,?o)@rdfStorage123.

Simplified version of the rdf load query. In most cases the user does not need to use
all the options provided by the rdf load method and the following method would suffice:

System[rdf fastload(?InputFileName, ?RdfStorage)]@\owl
This method uses fastload as the output format. The input language syntax is guessed from
the file extension and no IRI prefixes are expected to be supplied. In other words, a call like

Portions Copyright c© 2013–2017 Coherent Knowledge 29

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#

CHAPTER 5. LOADING RDF AND OWL FILES

System[rdf fastload(’wind.owl’, rdfStorage123)]@\owl
is equivalent to

System[rdf load(’wine.owl’,’’,fastload,’’,rdfStorage123)]@\owl

Portions Copyright c© 2013–2017 Coherent Knowledge 30

Chapter 6

Evidential Probabilistic Reasoning
in ERGO

by Theresa Swift

Evidential probability [1] is an approach to reasoning about probabilistic information that
may be approximate, incomplete, or even contradictory. Rather than providing a full calculus
for probabilistic deduction, evidential probability addresses the question of the probability of
whether a given object is a member of a given class. To support this, evidential probability
extends ERGO with statistical statements of the form

\pct(targC, refC,Low,High)

where targC, refC are ERGO classes, while Low and High are numbers between 0 and
1. Such a statement indicates that any given element of refC is an element of targC with
probability between Lower and Upper. For instance

\pct(stolen,redRacing,0.0084,0.0476).

could be used to indicate that the proportion of redRacing bicycles that are stolen in a given
town is between 0.0084 and 0.476. 1

In order to determine the probability of whether an individual o is in a class C (when o
cannot be proved for certain to be in C) statistical statements are used together with Ergo’s
class membership (: /2) and subclass (:: /2) statements. Information about the classes to
which o certainly belongs is extended with statistical information in the following manner. A
candidate set Cand is collected by examining each statistical \pct-statement S for which o is
known to be an element of the reference class of S and for which C is a subclass of the target
class of S. Namely,

Cand = {refC| \pct(targC, refC,Low,High), C :: targC, o ∈ refC}

Using this candidate set, a series of rules is used to derive a single interval representing the
probability that o ∈ targC.

1 In [1], a more general model is presented, which addresses the question of whether a given n-tuple of
domain elements is in the extension of a formula with n free variables.

31

CHAPTER 6. EVIDENTIAL PROBABILISTIC REASONING IN ERGO

As mentioned above, evidential probability is good for modelling situations where probabilis-
tic information may be missing or inconsistent. For instance, consider an individual Mary
in a given knowledge base. Mary might belong to a number of different classes: female,
mother-of-2, American, resident-of-Virginia, over-40, college-educated, weekend-painter, and
so on. To understand the likelihood that Mary would contract a given well-studied disease,
d, information for various epidemiological studies could be consulted. Some studies, such as
those restricted to male subjects, would not apply to Mary because she is not a member of
the reference class Man. On the other hand, some of the classes to which Mary belongs, such
as weekend painter, are also irrelevant to whether she will contact d — this time because
there would be no \pct-facts with weekend-painter as a reference class (presumably because
there would be no studies of the relationship between painting on weekends to the disease
in question). Of the studies that do pertain to Mary, some might be more relevant than
others. For instance, a study of the incidence of d for women over 35 would be more relevant
than a study of the general population because Mary belongs to the class over-40, which is
more specific than the class of all persons. At the same time, various studies that pertain
to Mary may conflict with one another. In general, we can’t expect there to be a perfect
study that considers all potential risk factors for Mary. Also, we can’t necessarily expect that
information from the relevant studies is entirely consistent, due to differences in experimen-
tal methods. Thus, evidential probability combines the relevant information, weighs some
information more heavily than other information, and resolves conflicts.

The Principles of Evidential Probability One means of weighing information is the
principle of specificity: a statement S1 may override statement S2 if 1) their associated inter-
vals conflict (one interval is not contained in the other); and 2) the reference class of S1 is
more specific to an object o1 than that of S2. A second principle is that of precision. Given
two intervals (L1, U1) and (L2, U2) where one interval is retained in the other, only the more
precise interval is contained. After repeatedly applying the principle of specificity, then of
precision, a final candidate set of intervals, Sfin is obtained. The final probability is taken to
be the smallest interval containing all intervals in Sfin.

Evidential probability is thus not a full probabilistic logic, but a meta-logic for defeasible
reasoning about statistical statements once non-probabilistic aspects of a model have been
derived. It is thus more specialized and less powerful than other types of probabilistic logics;
but it is efficient to compute, and applicable to situations where such logics don’t apply, due
to contradiction, incompleteness, or other factors. 2

Demonstration Example: Stolen Bikes

The file .../Ergo/ergo demos/evidential probability/bikes.ergo provides an example
of reasoning about evidential probability, and contains a subclass hierarchy along with a set
of statistical statements. To use evidential probability, first load the package into the module
ergo ep:

2Other prioritizations could also be considered, such as prioritizing more trusted information (say, infor-
mation from better experiments or studies). This type of priority is described in [1] as sharpening by richness,
but is not implemented here.

Portions Copyright c© 2013–2017 Coherent Knowledge 32

CHAPTER 6. EVIDENTIAL PROBABILISTIC REASONING IN ERGO

ergo> [evidential_probability >> ergo_ep].

then load the example

ergo> [’ergo_demos/evidential_probability/bikes’].

On Windows, use double-backslashes instead of forward slashes:

ergo> [’c:ergo_demos\\evidential_probability\\bikes’].

At this stage, queries can be made about evidential probability. The query:

ergo> \ep(stolen,redRacingImported,?L,?H)@ergo_ep.

should return ?L = 0,?U = 0.0454. We show in detail how these bounds bounds were derived.
The first step is to sharpen by specificity, i.e., to collect all of the relevant statistical statements
that pertain to redRacingImported, beginning with the most specific. There are no statistical
statements about stolen bicycles in the class redRacingImported, but there are statements
for its immediate superclasses redRacing, racingImported and redImported, all of which
form the current candidate set. Next, we check statistical statements for the immediate
superclasses of the candidate set, namely red, racing and imported. Consider first the
interval associated with red:[0.0084,0.0476]. This interval is considered to conflict with
that of e.g., redRacing: [0,0.0454] since neither interval is contained in the other. In this
case, the interval for red is overridden and not considered further. Similar considerations
override intervals for imported and bike. Thus, at the end of sharpening by specificity, the
candidate classes and their intervals are:

redRacing:[0,0.0454], racing:[0,0.0467], redImported:[0,0.0467],

racingImported:[0,0.0582].

The next step is to sharpen by precision, which throws out all candidate intervals that are
contained in other intervals. This step throws out all intervals except for that of redRacing:
[0,0.0454].

Portions Copyright c© 2013–2017 Coherent Knowledge 33

Chapter 7

Importing Tabular Data (CSV,
TSV, etc., Files)
by Michael Kifer

This chapter describes the ERGO API for importing tabular data from delimiter separated
values files (DSV).

A DSV file consists of rows of values that are separated by a separator. This is the standard
format for exporting tabular data from spreadsheets and other formats. Usually the separator
is either a comma or a tab, but could be another character or a sequence of characters. If
a field contains spaces, commas, or some other spacial characters, the field is enclosed in
delimiters. The default is a double quote, e.g., "a,b| c", but can be changed.

The API currently consists of two calls and might be extended in the future. First, the DSV
package (e2dsv) must be loaded into an ERGO module, say, dsv:

?- [e2dsv>>dsv].

After that, the following predicates will become available:

• dsv load(?Infile,?Spec,?Format): The rows of the DSV file, say ’example.csv’, will be
loaded into the predicate specified by ?Spec. The form of this specification is described
below. ?Format indicates the format of the input file: csv, tsv, psv, or something else,
as described below.

• dsv save(?Infile,?Spec,?OutFile,?Format): The rows from the CVS Infile are converted
into the ERGO format (according to Spec, which is the same as in dsv load) and then
saved in OutFile. ?Format is the same as in dsv load — see below.

The import specification in the above calls can have several forms:

• predname/arity : The rows are imported and the predicate predname/arity is populated
with them. The arity piece must equal the number of columns in the typical row of
the DSV file. If the DSV file has longer lines, the extra columns will be ignored and

34

CHAPTER 7. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

warnings will be issued. If the file has shorter lines than the arity, the extra arguments
in predname will be padded with variables. All values are imported as general ERGO

constant symbols (Prolog atoms).

• predname(ArgSpec1, ..., ArgSpecN): In this form, the user can indicate how the values in
the DSV file should be converted. The previous form of Spec was importing everything
as Prolog atoms, but if the values are numbers then this is not very satisfactory. The
possible values for an ArgSpec are:

– atom or ?: the corresponding value from the DSV file is converted into a Prolog
atom.

– integer: the value is converted into an integer. If the value cannot be converted
into an integer, an error is issued and the value is converted into an atom. The
error does not abort the computation and is intended to alert the user.

– float: the value is converted into a floating point/decimal number. If the cannot
be converted into a float, an error is issued and the value is converted into an atom.
Again, the error is intended to merely alert the user.

Note: p/3 is equivalent to the specification p(atom,atom,atom) or p(?,?,?).

• predname, where predname is an atom. In this case, a unary predicate predname is
populated from the spreadsheet. The predicate will contain lists of values corresponding
to each row. The values are all imported as atoms.

This option is useful when rows are irregular and have different sizes, so it will avoid
truncation or padding of the rows during the input.

The argument ?Format used in the above calls can be either csv — for comma-separated
files; tsv — for tab-separated files; psv — for |-separated files; or it can be a list of options
of the form:

• separator="chars"ˆˆ\charlist; the default is ","ˆˆ\charlist. This is the separator
between the fields.

• delimiter="chars"ˆˆ\charlist; the default is "\""ˆˆ\charlist. This is the field
delimiter for the fields that contain special characters like commas, spaces, etc. This
option is used only if some fields contain double quotes and so the default delimiter will
not work.

To query the predicate that is created as a result of the import, the following must be observed:

• The predicate must be queried using the idiom predname(...)@module, where module is
the module into which e2dsv was loaded (dsv in our earlier example). The number of
the arguments must match the specification Spec—see above.

• The previous contents of the above predicate will be wiped out once the DSV data is
loaded.

• If the predicate is queried from within a file rather than the ERGO shell, it must be
declared there as

Portions Copyright c© 2013–2017 Coherent Knowledge 35

CHAPTER 7. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

:- prolog{predname /arity }.

For instance, if the DSV file (CSV, in the example below) is

Name,Age,Parent

Bob,13,Mary

Bill,23

and we import it as follows:

?- [e2dsv>>dsv].

?- dsv_load(’example.csv’,p/3,csv)@dsv.

then the following facts will be added to p:

?- p(?X,?Y,?Z)@dsv.

?X = Bill

?Y = ’13’

?Z = ?

?X = Bob

?Y = ’13’

?Z = Mary

?X = Name

?Y = Age

?Z = Parents

A warning will be issued regarding Row 3 because it has only two items, while p has three
arguments.

?- dsv_load(’example.csv’,q,csv)@dsv. // the spec is just an atom

?- q(?X)@dsv.

?X = [Bill,’13’]

?X = [Bob,’13’,Mary]

?X = [Name,Age,Parents]

No warnings will be issued in this case.

If the specification of the output predicate were

?- dsv_load(’example.csv’,p(?,integer,?),csv)@dsv.

then the query p(?X,?Y,?Z)@dsv would return the result similar to the first example, but
’13’ would be 13 because the numbers in the second column would be imported as numbers
rather than atoms. There will be a warning that Age in the first row cannot be converted
into a number and also a warning concerning the shorter last line in the DSV file.

Portions Copyright c© 2013–2017 Coherent Knowledge 36

Chapter 8

Importing JSON Structures
by Michael Kifer

JSON is a popular notation for representing data. JSON is defined by the ECMA-404 stan-
dard, which can be found at http://www.json.org/. This chapter describes the ERGO

facility for importing JSON structures called values; it is based on an open source parser
called Parson https://github.com/kgabis/parson.

8.1 Introduction

In brief, a JSON structure is a value is an object, an array, a string, a number, true, false,
or null. An array is an expression of the form [value1, ..., valuen]; an object has a form
{ string1 : value1, ..., stringn : valuen }; strings are enclosed in double quotes and
are called the keys of the object; numbers have the usual syntax, and true, false, and null

are constants as written. Here are examples of relatively simple JSON values:

{

"first": "John",

"last": "Doe",

"age": 25

}

[1, 2, {"one" : 1.1, "two": 2.22}, null]

123

and here is a more complex example where values are nested to the depth of five:

{

"status": "ok",

"results": [{"recordings": [{"id": "12345"}],

"score": 0.789,

37

http://www.json.org/
https://github.com/kgabis/parson

CHAPTER 8. IMPORTING JSON STRUCTURES

"id": "9876"

}]

}

Although not part of the standard, it is quite common to see JSON structures that contains
comments like in C, Java, etc. The multiline comments have the form /* ... */ and the
here-to-end-of-line comments start with the //. ERGO ignores such comments.

The standard recommends, but does not require that the keys in an object do not have
duplicates (at the same level of nesting). Thus, for instance,

{"a":1, "b":2, "b":3}

is allowed, but discouraged. By default, the ERGO parser does not allow duplicate keys and
considers such objects as ill-formed. However, it also provides a way to set an option to allow
duplicate keys.

8.2 API for Importing JSON as Terms

When ERGO ingests a JSON structure, it represents it as a term as follows:

• Arrays are represented as lists.

• Strings are represented as ERGO symbols (Prolog atoms).

• Numbers are represented as such.

• true, false, null are represented as the Prolog (not HiLog!) 0-ary terms of the form
true(), false(), and ’NULL’().

• Finally, an object of the form { str1:val1,...,strn:valn} is represented as
json([str′1=val

′
1,...,str

′
n=val

′
n]), where str′i is the atom corresponding to the string

stri and val′i is the ERGO representation of the JSON value vali. Here, as above, json
is a unary Prolog, not HiLog, function symbol.

For instance, the above examples would be represented as ERGO terms as follows:

json([first = John, last = Doe, age = 25])@\prolog

[1, 2, json([one = 1.1000, two = 2.2200])@\prolog, NULL()@\prolog]

123

json([status = ok,

results = [json([recordings = [json([id = ’12345’])@\prolog],

score = 0.7890,

id = ’9876’]

)@\prolog]

])@\prolog

Portions Copyright c© 2013–2017 Coherent Knowledge 38

CHAPTER 8. IMPORTING JSON STRUCTURES

where we tried to pretty-print the last result so it would be easier to relate to the original
(which was also pretty-printed).

ERGO provides the following methods for importing JSON:

• Source [parse -> ?Result]@\json
Here Source can have the form string(Atom), str(Atom), file(Atom), Atom, or a
variable. The forms string(Atom) and str(Atom) must supply an atom whose content
is a JSON structure and Result will then be bound to the ERGO representation of that
structure. The forms file(Atom) and Atom interpret Atom as a file name and will read
the JSON structure from there. The last form, when the source is a variable, assumes
that the JSON structure is provided via the standard input. The user will have to send
the end-of-file signal (Ctrl-D in Linux or Mac; Ctrl-Z in Windows) in order to tell the
when the entire term has been entered.1 If the input JSON structure contains a syntax
error or some other problem is encountered (e.g., not enough memory) then the above
predicate will fail and a warning indicating the reason will be printed to the standard
output.

?Result can be a variable or any other term. If ?Result has the form pretty(something)
then something gets unified with a pretty-printed string representation of the
input JSON structure. If ?Result has any other form (typically a variable)
then the input is converted into an ERGO term as explained above. For in-
stance, the query string(’{"abc":1, "cde":2}’)[parse->?X]@\json will bind ?X

to the term json([abc=1,cde=2])@\prolog while the query string(’{"abc":1,
"cde":2}’)[parse->pretty(?X)]@\json will bind ?X to the atom

’{

"abc": 1,

"cde": 2

}’

which is a pretty-printed copy of the input JSON string.

• Source [parse(Selector) -> ?Result]@\json
The meaning of Source and Result parameters here are the same as before. The Selector
parameter must be a path expression of the form “string1.string2.string3” (with one or
more components) that allows one to select the first sub-object of a bigger JSON object
and return its representation. Note, the first argument must supply an object, not an
array or some other type of value. For instance, if the input is

{ "first":1, "second":{"third":[1,2], "fourth":{"fifth":3}} }

then the query ?[parse(first) -> ?X]@\json will bind ?X to 1 while
?[parse(’second.fourth’) -> ?X]@\json will bind it to json([fifth =

3])@\prolog.

Note that the selector lets one navigate through subobjects and not through arrays. If
an array is encountered in the middle, the query will fail. For instance, if the input is

1 Sending the end-of-file signal is not possible in the ERGO Studio Listener, so this last option is not
available through the studio.

Portions Copyright c© 2013–2017 Coherent Knowledge 39

CHAPTER 8. IMPORTING JSON STRUCTURES

{ "first":1, "second":[{"third":[1,2], "fourth":{"fifth":3}}] }

then the query ?[parse(’second.fourth’) -> ?X]@\json will fail and ?X will not be
bound to anything because the selector "second" points to an array and the selector
"fourth" cannot penetrate it.

Also note that if the JSON structure has more than one sub-object that satisfies the
selection and duplicate keys are allowed (e.g., in {"a":1, "a":2} both 1 and 2 satisfy
the selection) then only the first sub-object will be returned. (See below to learn about
duplicate keys in JSON.)

• set option(option =value)@\json
This sets options for parsing JSON for all the subsequent calls to the \json module.
Currently, only the following is supported:

duplicate_keys=true

duplicate_keys=false

As explained earlier, the default is that duplicate keys in JSON objects are treated as
syntax errors. The first of the above options tells the parser to allow the duplicates.
The second option restores the default.

Here is a more complex example, which uses the JSON parser to process the result of a search
of Google’s Knowledge Graph to see what it knows about Benjamin Grosof. To make the
output a bit more manageable, we are only asking to get the JSON subobject rooted at the
property itemListElement. The Knowledge Graph itself is queried using XSB’s curl library.

?- load_page(url(’https://kgsearch.googleapis.com/v1/entities:search?query=

benjamin_grosof&key=AIzaSyAaMs1AEkgRGAs_hkcULQLJ5NKrEOzyOB0&limit=1’),

[secure(false)], ?, ?_SearchResult, ?)@\plgall(curl),
str(?_SearchResult)[parse(itemListElement) -> ?Answer]@\json.

The answer to this query is

?Answer = [json([’@type’ = EntitySearchResult,

result = json([’@id’ = ’kg:/m/09pb9y8’,

name = ’Benjamin Nathan Grosof’,

’@type’ = [Person, Thing],

description = Mathematician]),

resultScore = 19.3944])]

8.3 API for Importing JSON as Facts

The API for importing JSON as terms is useful if one needs to traverse the imported JSON
tree structure and process it in some complex way. However, in knowledge interchange, JSON
is often used to exchange facts about enterprises being modeled by the different knowledge
base. For instance, the native representation in Wikidata and MongoDB is JSON and to get

Portions Copyright c© 2013–2017 Coherent Knowledge 40

https://kgsearch.googleapis.com/v1/entities:search?query=benjamin_grosof&key=AIzaSyAaMs1AEkgRGAs_hkcULQLJ5NKrEOzyOB0&limit=1
https://kgsearch.googleapis.com/v1/entities:search?query=benjamin_grosof&key=AIzaSyAaMs1AEkgRGAs_hkcULQLJ5NKrEOzyOB0&limit=1

CHAPTER 8. IMPORTING JSON STRUCTURES

the Wikidata or the MongoDB facts into ERGO we would want to represent the information
as queriable facts. Fortunately, converting JSON into ERGO facts is easy because the former
is mappable 1-1 to ERGO frames. For instance, the following JSON

{"kind": "person", "fullName": "John Doe", "age": 22, "gender": "Male",

"child": {{"fullName":"Bob Doe", "age":1}, // embedded JSON objects

{"fullName":"Alice Doe", "age":3}},

"citiesLived": [{ "place":"Boston", "numberOfYears":5}, // JSON objects

{"place":"Rome", "numberOfYears":6}]} // embedded in list

translates into this:

\#[kind->person, fullName->’John Doe’, age->22, gender->Male,

child->{\#[fullName->’Bob Doe’, age->1],

\#[fullName->’Alice Doe’, age->3]},

citiesLived->[\#[place->Boston, numberOfYears->5],

\#[place->Rome, numberOfYears->6]]

].

The principle should be obvious from the above example except that frames are not allowed
inside lists, and so

[\#[place->Boston,numberOfYears->5], \#[place->Rome,numberOfYears->6]]

is not a valid ERGO syntax. However, this is easy to fix by converting the above list with
embedded frames into the following list plus additional frame-facts, where newObjId1 and
newObjId2 are newly invented constants that do not appear anywhere else:

[newObjId1, newObjId2] // complex list became simple

newObjId1[place->Boston, numberOfYears->5]. // these facts were

newObjId2[place->Rome, numberOfYears->6]. // embedded in the above list

Thus, the actual translation of the JSON structure in question is

\#[kind->person, fullName->’John Doe’, age->22, gender->Male,

child->{\#[fullName->’Bob Doe’, age->1],

\#[fullName->’Alice Doe’, age->3]},

citiesLived->[newObjId1, newObjId2] // list no longer has embedded frames

].

newObjId1[place->Boston, numberOfYears->5]. // frames formerly

newObjId2[place->Rome, numberOfYears->6]. // embedded in a list

Conversion of JSON structures into facts is done by the following API calls:

• ?Src[parse2memory(?Mod)]@\json: The meaning of ?Src is as before. This API call
takes the input JSON structure, which must be a JSON object (and not a list, number,
etc.) and inserts facts, as explained above, into the ERGO module ?Mod, which must
exist beforehand (e.g., created via newmodule{...}).

Portions Copyright c© 2013–2017 Coherent Knowledge 41

CHAPTER 8. IMPORTING JSON STRUCTURES

• ?Src[parse2memory(?Mod,?Selector)]@\json: Like the previous call but also takes
the selector argument whose meaning is as in the case of the term-based JSON import.

• ?Src[parse2file(?File)@\json]: This is similar to parsing to memory, but the facts
are instead written to the specified file. If the file already exists, it is erased first. The
file can then be loaded or added into some ERGO module (adding is recommended).

• ?Src[parse2file(?File,?Selector)@\json]: Like the previous case, but also takes
the selector argument.

8.4 Exporting to JSON

ERGO provides API for exporting HiLog terms as well as objects to JSON.

8.4.1 Exporting HiLog Terms to JSON

The case of terms is simple: a term is represented simply as a JSON object with two features:
functor and arguments. The functor is also a term so it is futher converted according to the
same rules. The arguments part is a list of terms and the latter are converted recursively by
the same rule. For instance,

p(o)(${a(9)},b,?L,[pp(ii),2,3,?L])[term2json -> ?X]@\json.

?X = ’{"functor":{"functor":"p","arguments":["o"]}

"arguments":[{"predicate":"a","module":"main","arguments":[9]},

"b",

{"variable":"h0"},

[{"functor":"pp","arguments":["ii"]},

2,

3,

{"variable":"h0"}]]}’

Note that a term can be a reified predicate in which case the "predicate" feature name is
used instead of "functor". Also, a variable is translated into a JSON object of the form
{"variable": "varname"}. Since variable names in a logic formula are immaterial and all
that matters is whether two variables are the same or not, only internal names are shown. In
the above example, the two occurrences of ?X are shown as "h0".

• ?Term[term2json -> ?Json]@\json — convert HiLog term to which ?Term is bound
into a JSON expression. The result is an atom (an ERGO symbol) that contains the
JSON expression. Such an atom can be sent to a JSON-aware external application.

8.4.2 Exporting ERGO Objects to JSON

This API takes a HiLog term that is interpreted as an object Id and returns the JSON
encoding of all the immediate superclasses of that object and all the properties of that object.

Portions Copyright c© 2013–2017 Coherent Knowledge 42

CHAPTER 8. IMPORTING JSON STRUCTURES

The input object can be in the current module or in some other module. Furthermore, the
API can take conditions that would filter out the properties of the object that we are looking
for as well as eliminate the descendant object that we don’t want to see in the JSON encoding.
The idea of the encoding can best be understood via examples.

The first example gives a JSON encoding for the object kati from the family obj.flr demo
located in the demos/ folder in the ERGO distribution. First, we need to load this demo
via the command demo{family obj}. To get the JSON encoding, we use the object2json

method and then pretty-print the result as explained previously. That is,

?- demo{family_obj},

set_option(duplicate_keys=true)@\json,

kati[object2json -> ?Json]@\json,

string(?Json)[parse->pretty(?Res)]@\json,

writeln(?Res)@\io.

{

"\\self": "kati",

"\\isa": [

"female"

],

"ancestor": "hermann",

"ancestor": "johanna",

"ancestor": "rita",

"ancestor": "wilhelm",

"brother": "bernhard",

"brother": "karl",

"daughter": "eva",

"father": "hermann",

"mother": "johanna",

"parent": "hermann",

"parent": "johanna",

"sister_in_law": "christina",

"uncle": "franz",

"uncle": "heinz"

}

Note that we set the duplicate keys=true option because in the family obj demo most
of the properties (like ancestor) are multi-valued, which leads to repeated keys in JSON
representation. As we noted, this is allowed, but some applications do not support
such JSON expressions. If one needs to talk to such applications, simply don’t set the
duplicate keys=true option and the above will represent duplicate JSON keys using lists.
For instance, "ancestor":["hermann","johanna","rita","wilhelm"]. Note, however,
that without the duplicate keys option the JSON encoding becomes lossy, since we no
longer can tell whether the original ERGO attribute ancestor was multivalued (with each
single value being a string) or it was single-valued and the value was an ordered list.

Here we also note that the use of JSON API can often be simpler if one recalls the very useful

Portions Copyright c© 2013–2017 Coherent Knowledge 43

CHAPTER 8. IMPORTING JSON STRUCTURES

syntax of path expressions. For instance, the 3d and 4th lines in the above query can be
written much more shortly as

string(kati.object2json)[parse->pretty(?Res)]@\json

If we try to encode the class female we get the following:

string(kati.object2json)[parse->pretty(?Res)]@\json, writeln(?Res)@\io.

{

"\\self": "female",

"\\sub": [

"person"

],

"type": "gender"

}

Note that in ERGO properties can be HiLog terms and so they cannot be encoded simply as
a string like "parent". For instance,

?- insert{{a,b}:{c,d},d::k, k[|eee(123)->kkk|]}.

?- a[object2json -> ?Json]@\json,

string(?Json)[parse->pretty(?Res)]@\json,

writeln(?Res)@\io.

{

"\\self": "a",

"\\isa": [

"c",

"d"

],

"\\keyval": [

{

"functor": "eee",

"arguments": [

123

]

},

[

"kkk"

]

]

}

Note that eee(123) -> kkk is a complex property that object a inherits from class k. It is
encoded as a JSON keypair "\\keyval" : list where the first element of list is the encoding
of eee(123) and the second of "kkk".

Now we are ready to present the different versions of the object2json method.

Portions Copyright c© 2013–2017 Coherent Knowledge 44

CHAPTER 8. IMPORTING JSON STRUCTURES

• ?Obj[object2json -> ?Json]@\json — take an object and return a Prolog atom that
contains a JSON representation of the object’s immediate superclasses and properties
with respect to the ERGO module where this call is made.

• ?Obj[object2json(?Module) -> ?Json]@\json — as above, but the properties and
the superclasses of ?Obj are taken from the module ?Module.

• ?Obj[object2json(?Mod)(?keyFilter,?valFilter,?classFilter)->?Json]@\json
— this version lets one to not only specify the module but also impose conditions on
the properties of ?Obj, on the superclasses, and on the property values that we want
to see in the JSON representation. In the above, (?Mod) can be omitted and the
current module will be used then. A null (or any other constant) condition means “no
filtering for that type of argument.” Otherwise, the filters must be unary predicates or
primitives. In the example below we use unary primitives isnumber{?} and isatom{?}.

First, we show what happens without filtering. It is an expansion of an earlier example:

ergo> insert{{a,b}:c, c::{h,k}, h[|www->1|],k[|ppp->kk, eee(123)->kkk|]},

string(a.object2json)[parse->pretty(?Res)]@\json, writeln(?Res)@\io.

{

"\\self": "a",

"\\isa": [

"c"

],

"ppp": [

"kk"

],

"www": [

1

],

"\\keyval": [

{

"functor": "eee",

"arguments": [

123

]

},

[

"kkk"

]

]

}

In contrast, the following query says that we want to see only the atomic properties (so
eee(123) will be omitted) and only such properties whose values are numbers. No restrictions
on superclasses is imposed:

ergo> string(a.object2json(isatomic{?},isnumber{?},null))[

Portions Copyright c© 2013–2017 Coherent Knowledge 45

CHAPTER 8. IMPORTING JSON STRUCTURES

parse->pretty(?Res)

]@\json, writeln(?Res)@\io.

{

"\\self": "a",

"\\isa": [

"c"

],

"www": [

1

]

}

We see that the complex property eee(123)->1 got dropped because it is not atomic and the
property "ppp" got dropped because its values are not integers.

Recursive export. Sometimes it is desirable to convert not just an object, but an object
together with its descendant objects—the ones reachable from the object via its attributes—
into a single JSON structure. For instance, in our family obj.flr example, kati has an
ancestor-descendant object hermann, which is also a person-object that has its own JSON
representation. We might want to attach that representation to the kati-JSON structure at
the point where "hermann" is attached. To enable such a recursive export into JSON, one
must set the recursive export option by executing the following query:

?- set_option(recursive_export=true)@\json.

We cannot show here the result of a recursive export for kati, as the resulting structure is
too big, but we will show a smaller example:

ergo> insert{{a,b}:d, d::e, e::k ,k[|ppp->kk:d[prop1->abc,prop2->3], ppp->jj|]},

string(a.object2json)[parse->pretty(?_Res)]@\json, writeln(?_Res)@\io.

{

"\\self": "a",

"\\isa": [

"d"

],

"ppp": [

{

"\\self": "jj"

},

{

"\\self": "kk",

"\\isa": [

"d"

],

"ppp": [

{

Portions Copyright c© 2013–2017 Coherent Knowledge 46

CHAPTER 8. IMPORTING JSON STRUCTURES

"\\self": "jj"

},

{

"\\self": "kk",

"\\isa": [

"d"

]

}

],

"prop1": [

{

"\\self": "abc"

}

],

"prop2": [

{

"\\self": 3

}

]

}

]

}

Here we see that "kk" (a ppp-descendant object of "a") is also JSON-expanded. Moreover,
it is easy to see that kk[ppp->kk] is true, which means that kk is a ppp-descendant of itself.
Thus, there is a cycle through kk in the descendant-object relation and if we kept expanding
kk as we traverse the ppp attribute, the resulting JSON term would be infinite. Therefore, as
you can see, the second time we encounter "kk" it is not expanded and only its isa-information
is shown (the sub-information would have also been shown, if it existed).

Portions Copyright c© 2013–2017 Coherent Knowledge 47

Chapter 9

Persistent Modules
by Vishal Chowdhary

This chapter describes a ERGO package that enables persistent modules. A persistent module
(abbr., PM) is like any other ERGO module except that it is associated with a database. Any
insertion or deletion of base facts in such a module results in a corresponding operation on the
associated database. This data persists across ERGO sessions, so the data that was present
in such a module is restored when the system restarts and the module is reloaded.

9.1 PM Interface

A module becomes persistent by executing a statement that associates the module with an
ODBC data source described by a DSN. To start using the module persistence feature, first
load the following package into some module. For instance:

?- [persistentmodules>>pm].

The following API is available. Note that if you load persistentmodules into some other
module, say foo, then foo should be used instead of pm in the examples below.

• ?- ?Module[attach(?DSN,?DB,?User,?Password)]@pm.

This action associates the data source described by an ODBC DSN with the module. If
?DB is a variable then the database is taken from the DSN. If ?DB is bound to an atomic
string, then that particular database is used. Not all DBMSs support the operation of
replacing the DSN’s database at run time. For instance, MS Access or PostgresSQL
do not. In this case, ?DB must stay unbound or else an error will be issued. For other
DBMS, such as MySQL, SQL Server, and Oracle, ?DB can be bound.

The ?User and ?Password must be bound to the user name and the password to be
used to connect to the database.

The database specified by the DSN must already exist and must be created by a previous
call to the method attachNew described below. Otherwise, the operation is aborted.
The database used in the attach statement must not be accessed directly—only through

48

CHAPTER 9. PERSISTENT MODULES

the persistent modules interface. The above statement will create the necessary tables
in the database, if they are not already present.

Note that the same database can be associated with several different modules. The
package will not mix up the facts that belong to different modules.

• ?- ?Module[attachNew(?DSN,?DB,?User,?Password)]@pm.

Like attach, but a new database is created as specified by ?DSN. If the same database
already exists, an exception of the form ERGO DB EXCEPTION(?ErrorMsg) is thrown. (In
a program, include flora exceptions.flh to define ERGO DB EXCEPTION; in the shell,
use the symbol ’ $ergo db error’.) This method creates all the necessary tables, if
they are not already present.

Note that this command works only with database systems that understand the SQL
command CREATE DATABASE. For instance, MS Access does not support this command
and will cause an error.

• ?- ?Module[detach]@pm.

Detaches the module from its database. The module is no longer persistent in the sense
that subsequent changes are not reflected in any database. However, the earlier data is
not lost. It stays in the database and the module can be reattached to that database.

• ?- ?Module[loadDB]@pm.

On re-associating a module with a database (i.e., when ?Module[attach(?DSN,

?DB,?User,?Password)]@pm is called in a new ERGO session), database facts previ-
ously associated with the module are loaded back into it. However, since the database
may be large, ERGO does not preload it into the main memory. Instead, facts are loaded
on-demand. If it is desired to have all these facts in main memory at once, the user
can execute the above command. If no previous association between the module and a
database is found, an exception is thrown.

• ?- set field type(?Type)@pm.

By default, ERGO creates tables with the VARCHAR field type because this is the
only type that is accepted by all major database systems. However, ideally, the CLOB
(character large object) type should be used because VARCHAR fields are limited to
4000-7000 characters, which is usually inadequate for most needs. Unfortunately, the
different database systems differ in how they support CLOBs, so the above call is
provided to let the user specify the field types that would be acceptable to the system(s)
at hand. The call should be made right before attachNew is used. Examples:

?- set_field_type(’TEXT DEFAULT NULL’)@pm. // MySQL, PostgreSQL

?- set_field_type(’CLOB DEFAULT NULL’)@pm. // Oracle, DB2

Once a database is associated with the module, querying and insertion of the data into the
module is done as in the case of regular (transient) modules. Therefore PM’s provide a
transparent and natural access to the database and every query or update may, in principle,
involve a database operation. For example, a query like ?- ?D[dept -> ped]@StonyBrook.

may invoke the SQL SELECT operation if module StonyBrook is associated with a database.
Similarly insert{a[b -> c]@stonyBrook} and delete{a[e -> f]@stonyBrook} will invoke

Portions Copyright c© 2013–2017 Coherent Knowledge 49

CHAPTER 9. PERSISTENT MODULES

SQL INSERT and DELETE commands, respectively. Thus, PM’s provide a high-level abstraction
over the external database.

Note that if ?Module[loadDB]@pm has been previously executed, queries to a persistent mod-
ule will not access the database since ERGO will use its in-memory cache instead. However,
insertion and deletion of facts in such a module will still cause database operations.

9.2 Examples

Consider the following scenario sequence of operations.

// Create new modules mod, db_mod1, db_mod2.

ergo> newmodulemod, newmoduledb_mod1, newmoduledb_mod2.

ergo> [persistentmodules>>pm].

// insert data into all three modules.

ergo> insertq(a)@mod,q(b)@mod,p(a,a)@mod.

ergo> insertp(a,a)@db_mod1, p(a,b)@db_mod1.

ergo> insertq(a)@db_mod2,q(b)@db_mod2,q(c)@db_mod2.

// Associate modules db_mod1, db_mod2 with an existing database db

// The data source is described by the DSN mydb.

ergo> db_mod1[attach(mydb,db,user,pwd)]@pm.

ergo> db_mod2[attach(mydb,db,user,pwd)]@pm.

// insert more data into db_mod2 and mod.

ergo> inserta(p(a,b,c),d)@db_mod2.

ergo> insertq(a)@mod,q(b)@mod,p(a,a)@mod.

// shut down the engine

ergo> \halt.

Restart the ERGO system.

// Create the same modules again

ergo> newmodulemod, newmoduledb_mod1, newmoduledb_mod2.

// try to query the data in any of these modules.

ergo> q(?X)@mod.

No.

ergo> p(?X,?Y)@db_mod1.

No.

// Attach the earlier database to db_mod1.

ergo> [persistentmodules>>pm].

Portions Copyright c© 2013–2017 Coherent Knowledge 50

CHAPTER 9. PERSISTENT MODULES

ergo> db_mod1[attach(mydb,db,user,pwd)]@pm.

// try querying again...

// Module mod is still not associated with any database and nothing was

// inserted there even transiently, we have:

ergo> q(?X)@mod.

No.

// But the following query retrieves data from the database associated

// with db_mod1.

ergo> p(?X,?Y)@db_mod1.

?X = a,

?Y = a.

?X = a,

?Y = b.

Yes.

// Since db_mod2 was not re-attached to its database,

// it still has no data, and the query fails.

ergo> q(?X)@db_mod2.

No.

Portions Copyright c© 2013–2017 Coherent Knowledge 51

Chapter 10

SGML and XML Parsers for ERGO

by Rohan Shirwaikar

This chapter documents the ERGO package that provides SGML and XPath parsing capa-
bilities. One set of predicates supports parsing SGML, XML, and HTML documents, which
creates ERGO objects in the user specified module. Other predicates evaluate XPath queries
on XML documents and create ERGO objects in user specified modules. The predicates make
use of the sgml and xpath packages of XSB.

10.1 Summary of the Predicates

load xml structure/3 Parse XML data into ERGO objects
load sgml structure/3 Parse SGML data into ERGO objects
load html structure/3 Parse HTML data into ERGO objects
load xhtml structure/3 Parse XHTML data into ERGO objects
parse xpath xml/5 Apply an XPath expression to an XML document and parse the result
parse xpath sgml/5 Apply an XPath expression to an SGML document and parse the result
parse xpath html/5 Apply an XPath expression to an HTML document and parse the result
parse xpath xhtml/5 Apply an XPath expression to an XHTML document and parse the result

10.2 Description

This package supports parsing SGML, XML, and HTML documents, converting them to
sets of ERGO objects stored in user-specified ERGO modules. The SGML interface provides
facilities to parse input in the form of files, URLs and strings (Prolog atoms).

For example, the following XML snippet

<greeting id=’1’>

<first ssn=111’>

John

</first>

52

CHAPTER 10. SGML AND XML PARSER FOR ERGO

</greeting>

will be converted into the following ERGO objects:

o1[element -> {o2}]

o2[id -> ’1’]

o2[first -> {o3}]

o2[ssn -> ’111’]

To load the flrxml package, the user should run the following command at the ERGO prompt.

ergo> [flrxml].

The following predicates are provided by the flrxml package. They take SGML, XML,
HTML, or XHTML documents and create the corresponding ERGO objects as specified in
Section 10.4.

load sgml structure(+?Source,-?Warn,+?Module)@flrxml

load xml structure(+?Source,-?Warn,+?Module)@flrxml

load html structure(+?Source,-?Warn,+?Module)@flrxml

load xhtml structure(+?Source,-?Warn,+?Module)@flrxml

The arguments to these predicates have the following meaning:

?Source is an input SGML, XML, HTML, or XHTML document. It is of the form url(url),
file(’file name’) or string(’document as a string’). ?Module is the name of the
ERGO module where the objects created by flrxml should be placed. ?Module must be
bound. ?Warn gets bound to a list of warnings, if any are generated, or to an empty list.

10.3 XPath Support

XPath support is based on the XSB xpath package, which must be configured as explained
in the XSB manual. This package, in turn, relies on the XML parser called libxml2. It
comes with most Linux distributions and is also available for Windows, MacOS, and other
Unix-based systems from http://xmlsoft.org. Note that both the library itself and the .h

files of that library must be installed.

The following predicates are provided. They select parts of the input document using the
provided XPath expression and create ERGO objects as specified in Section 10.4. These
predicates handle XML, SGML, HTML, and XHTML, respectively.

parse xpath xml(+?Source,+?XPath,+?NamespacePrefixList,-?Warn,+?Module)@flrxml

Portions Copyright c© 2013–2017 Coherent Knowledge 53

CHAPTER 10. SGML AND XML PARSER FOR ERGO

parse xpath sgml(+?Source,+?XPath,+?NamespacePrefixList,-?Warn,+?Module)@flrxml

parse xpath html(+?Source,+?XPath,+?NamespacePrefixList,-?Warn,+?Module)@flrxml

parse xpath xhtml(+?Source,+?XPath,+?NamespacePrefixList,-?Warn,+?Module)@flrxml

The arguments have the following meaning:

Source specifies the input document; this parameter has the same format as in
load structure. ?XPath is an XPath expression specified as a Prolog atom. ?Module is
the module where the resulting ERGO objects should be placed. ?Module must be bound.
?Warn gets bound to a list of warnings, if any are generated during the processing, or to an
empty list.

?NamespacePrefixList is a string that looks like a space separated list of items of
the form prefix = namespaceURL . This allows one to use namespace prefixes in the
XPath query given in the ?XPath parameter. For example if the XPath expression is
’/x:html/x:head/x:meta’ where x stands for ’http://www.w3.org/1999/xhtml’, then this
prefix would have to be defined in ?NamespacePrefixList:

parse_xpath_xhtml(url(’http://w3.org’),

’/x:html/x:head/x:meta’,

’x=http://www.w3.org/1999/xhtml’,

?Warnings,

foomodule)@flrxml.

10.4 Mapping XML to ERGO

This mapping is based on a proposal by Guizhen Yang. It specifies how an XML parser can
construct the corresponding F-logic objects as a result of parsing an input XML document.

The basic idea is as follows:

• Elements in XML are modeled as objects in F-logic.

• Subelements in XML are modeled as multivalued attributes in F-logic.

• Element attributes in XML are modeled as single-valued attributes in F-logic. This
complies to the XML 1.0 specification which states that an attribute be defined only
once for each element in an XML document.

This proposal deals with data-intensive XML documents, i.e., those that don’t rely on the
interpretation of comments or processing instructions to carry data. However, this proposal
does consider the modeling of mixed element content in which text and subelements are
interspersed.

We do not consider modeling XML entities either, assuming no entity references or that all
entity references in the original XML document are already resolved by an XML parser.

Portions Copyright c© 2013–2017 Coherent Knowledge 54

CHAPTER 10. SGML AND XML PARSER FOR ERGO

10.4.1 Object Ids

According to the XML specification 1.0, an XML element can be defined with an oid that
is unique across the document. Such an oid can be provided as the value of an element
attribute of type ID, although this attribute can be arbitrarily named. Since an XML element
is modeled as an F-logic object, we would like the oid of this object to take the value of any
ID attribute if such value is defined. Otherwise, the oid must be automatically generated by
the system.

Sitting on top of the XML root element, there is an additional root object which just functions
as the access point to the entire object hierarchy.

Note:

• Only a validating XML parser can decide whether an attribute is an ID attribute since
such definition is provided by a DTD.

• The oids of leaf nodes, which have no outgoing edges and carry plain text, are just the
string values.

For example, the following XML document:

<?xml version="1.0"?>

<person ssn="111-22-3333">

<name first="John" (Example 1)

last="Smith"/>

</person>

is represented by the following F-logic objects, provided we already know that ssn is an ID
attribute:

o1[person -> {’111-22-3333’}].

’111-22-3333’[ssn -> ’111-22-3333’,

name -> {o2}

].

o2[first -> ’John’, last -> ’Smith’].

10.4.2 Text and Mixed Element Content

The content of an XML element may consist of plain text, or subelements interspersed with
plain text, for instance:

<greeting>Hi! My name is <first>John</first> <last>Smith</last>.</greeting>

Each text segment is modeled in F-logic as if it were referred to by a special tag, named
’$text’. Corresponding to each text segment, a node is created and is referred to from the
parent node by an edge labeled ’$text’. The text becomes the value of a special single-
valued attribute, named ’$string’, of the newly created node. Moreover, if the content

Portions Copyright c© 2013–2017 Coherent Knowledge 55

CHAPTER 10. SGML AND XML PARSER FOR ERGO

of an XML element consists solely of plain text, then the text also becomes the value of a
special single-valued attribute of this element, named ’$content’, which is introduced for
convenience purpose.

Therefore, the above XML segment would generate the following F-logic objects, where o1,

..., o9 are new oids:

o1[greeting -> {o2}].

o2[’$text’ -> {o3},

first -> {o4},

’$text’ -> {o6},

last -> {o7},

’$text’ -> {o9}

].

o3[’$string’ -> ’Hi! My name is ’].

o4[’$content’ -> ’John’, ’$text’ -> {o5}].

o5[’$string’ -> ’John’].

o6[’$string’ -> ’ ’].

o7[’$content’ -> ’Smith’, ’$text’ -> {o8}].

o8[’$string’ -> ’Smith’}.

o9[’$string’ -> ’.’].

Note:

• Handling of the whitespaces depends on the application. In the examples shown here,
we assume that “insignificant” whitespaces have been omitted by the XML parser.

• ’$content’ can also be defined for every element. Its value is just the ASCII string as
it appeared in the original document.

10.4.3 Multivalued XML Attributes

XML element attributes of type IDREFS are multivalued, in the sense that their value is
a string consisting of one or more oids separated by whitespaces. Therefore, the value of
such an attribute is a set. To stick to the convention that element attributes are modeled as
single-valued attributes in F-logic, the value of an XML IDREFS attribute is represented as
a list.

For example, the following XML segment:

<paper id="yk00" references="klw95 ckw91">

<title>paper title</title>

</paper>

will generate the following F-logic atoms, assuming that the reference attribute is of type
IDREFS:

yk00[references -> [klw95,ckw91],

Portions Copyright c© 2013–2017 Coherent Knowledge 56

CHAPTER 10. SGML AND XML PARSER FOR ERGO

title -> {o1}

].

o1[’$content’ -> ’paper title’, ’$text’ -> {o2}].

o2[’$string’ -> ’paper title’].

Note that since attribute definitions are provided by DTDs, only a validating XML parser can
decide whether an element attribute has the type IDREFS. A non-validating parser should
just output the attribute values as strings. The semantics of these strings is subject to further
interpretation by the applications.

10.4.4 Ordering

XML is order-sensitive, since XML DTDs impose order among elements. For example, the
following DTD element definition

<!ELEMENT book (author+, title, ISBN?)>

states that the content of a book element consists of one or more author element, followed
by one title element, followed by an optional ISBN element. Note that XML 1.0 does not
prescribe any order among element attributes.

Preserving the order of elements can also be useful for translating F-logic objects back into
an XML document.

A total order among the elements in an XML document should suffice to establish the order
in which the elements appear sequentially in the XML document. In other words, such a total
order should correspond to the order in which the element open tags appear. In addition, the
ordering should also take into account the mixed element contents in which each text segment
is referred to by a ’$text’ attribute.

<?xml version="1.0"?>

<person ssn="111-22-3333">

<name>

<first>John</first> (Example 2)

<last>Smith</last>

</name>

<email>jsmith@abc.com</email>

</person>

For example, the XML document in Example 2 can be represented by the following tree, in
which the integers enclosed by parentheses beside the nodes represent the order assigned to
the elements:

o1 (0)

|

| person

|

Portions Copyright c© 2013–2017 Coherent Knowledge 57

CHAPTER 10. SGML AND XML PARSER FOR ERGO

’111-22-3333’ (1)

/ \

name / \ email

/ \

(2) o2 o7 (7)

/ \ \

first / \last \ ’$text’

/ \ \

(3) o3 o5 (5) o8 (8)

| | ’jsmith@abc.com’

’$text’ | |’$text’

| |

(4) o4 o6 (6)

’John’ ’Smith’

Pre-order traversal of the XML tree will generate the total order for the XML elements and
text segments.

The ordering information that exists in XML documents is encoded as follows. For each
node, we introduce a special single-valued attribute, named ’$order’, which stores the order
number.

<bibliography>

<paper id="sb97">

<author>

<first>John</first>

<last>Smith</last>

</author>

<author>

<first>David</first>

<last>Brown</last>

</author> (Example 3)

</paper>

<paper id="s91">

<author>

<first>John</first>

<last>Smith</last>

</author>

</paper>

</bibliography>

10.4.5 More on Special Attributes

The following special attributes are all single-valued. Note that this proposal does not intend
to eliminate redundant information that may exist across various attributes. It is up to the
implementation to decide whether to generate these attributes extensionally or intentionally.

Portions Copyright c© 2013–2017 Coherent Knowledge 58

CHAPTER 10. SGML AND XML PARSER FOR ERGO

1. ’$tag’

For each node, ’$tag’ returns the unordered label of the edge pointing to this node.
’$tag’ can be defined as follows:

?O[’$tag’ -> ?Tag] :- ?[Tag -> ?O].

Note that for a node representing a text segment, the value of its ’$tag’ attribute is
’$text’.

2. ’$parent’

For each node, ’$parent’ returns the oid of the parent node.

3. ’$leftSibling’

For each node, ’$leftSibling’ returns the oid of the node appearing immediately
before the current node. This attribute is not defined for the nodes without a left
sibling.

4. ’$rightSibling’

For each node, ’$rightSibling’ returns the oid of the node appearing immediately
after the current node. This attribute is not defined for those nodes without a right
sibling.

5. ’$childrenNum’

For each node, ’$childrenNum’ returns the number of children including nodes repre-
senting text segments.

6. ’$childrenList’

For each node, ’$childrenList’ returns a list, which is ordered, of the oids of its
children. Note that each text segment is also counted as a child node.

7. ’$child’(N)

For each node, ’$child’(N) returns the N-th child, where 1 ≤ N and N ≤
’$chidlrenNum’.

8. ’$tagList’

For each node, ’$tagList’ returns an ordered list of the tags of its children. Note that
each text segment is also counted as if it were enclosed by a ’$text’ tag.

9. ’$tag’(N)

For each node, ’$tag’(N) returns the tag of the N-th child, where 1 ≤ N and N ≤
’$chidlrenNum’. This attribute can be defined as follows:

O[’$tag’(N) -> Tag] :- O[’$child’(N) -> V[’$tag’ -> Tag]].

Note: The aforesaid attribute ’$content’ can be defined for the nodes whose content is pure
text as follows:

O[’$content’ -> String] :-

O[’$childrenNum’ -> 1].text(1)[’$string’ -> String].

Portions Copyright c© 2013–2017 Coherent Knowledge 59

Bibliography

[1] H. Kyburg and C. Teng. Uncertain Inference. Cambridge University Press, 2001.

60

	JAVA-to-ERGO Interfaces
	The Low-level Interface
	The High-Level Interface
	Executing Java Application Programs with ERGO
	Summary of the Variables Used by the Interface
	Building the Prepackaged Examples

	ERGO-to-Java Interface
	General
	Dialog Boxes
	Windows
	Printing to a Window
	Scripting Java Applications

	Querying SQL Databases
	Connecting to a Database
	Queries

	Querying SPARQL Endpoints
	General
	Queries and Updates
	Creating Your Own Triple Store
	GraphDB
	Jena TDB

	Loading RDF and OWL files
	General

	Evidential Probabilistic Reasoning in ERGO
	Importing Tabular Data (DSV, TSV, etc.)
	Importing JSON Structures
	Introduction
	API for Importing JSON as Terms
	API for Importing JSON as Facts
	Exporting to JSON
	Exporting HiLog Terms to JSON
	Exporting ERGO Objects to JSON

	Persistent Modules
	PM Interface
	Examples

	SGML and XML Parser for ERGO
	Summary of the Predicates
	Description
	XPath Support
	Mapping XML to ERGO
	Object Ids
	Text and Mixed Element Content
	Multivalued XML Attributes
	Ordering
	More on Special Attributes

