Rulelog: What the New Advances in Logic-Based AI Can Do for Data Science

Benjamin Grosof
Coherent Knowledge*

Slight revised version of Presentation (60-min.) at
Seattle Data Science Meetup**
February 24, 2016 (revised April 6, 2016)
Hosted at Galvanize, Seattle, Washington, USA

Slides also by Janine Bloomfield

* Web: http://coherentknowledge.com
Email: firstname.lastname@coherentknowledge.com

** Web: http://www.meetup.com/Seattle-Data-Science/events/227278878/?rv=me1

© Copyright 2016 by Coherent Knowledge.
Coherent Knowledge: Company Overview

- Logic-based artificial Intelligence (AI) software for advanced analytics, query answering, and decision automation
 - Knowledge representation and reasoning (KRR). Best-of-breed platform component (complements DB, ML, ...).
 - Leverages over a decade of major government/privately funded research advances in KRR. Founded 7/2013.
 - Most complete and optimized implementation of Rulelog
- Company offers: software product Ergo Suite™ + professional services (incl. dev)
 - Capabilities: smart rules with deep reasoning. Work thru partners to create applications.
 - Apps: policy/regulatory compliance for finance, defense intelligence analysis, e-commerce
- World-class founder team: created many industry-leading logic systems & standards
 - XSB Prolog, RuleML, W3C RIF, W3C OWL-RL, IBM Common Rules, SWRL, SweetRules, Rulelog
 - Extensive experience applying logic systems to numerous domains in government and business
The Core of AI

Artificial Intelligence (AI)

- Machine Learning (ML)
- Knowledge Representation and Reasoning (KRR)
Combining ML and KRR

• Core AI = KRR + ML. KRR is required for Cognitive Computing too.
• The prediction step of ML requires reasoning
• The target of ML is a representation
• Getting value from ML requires reasoning for analysis and decisions
• KRR is required to combine results of ML, accumulate knowledge coherently, and explain knowledge
 • Weaknesses of ML today
• Reasoning to supply derived facts for ML to chew on
• Reasoning to focus ML’s tasks and conjecture schemas
 • e.g., sets of relevant features, important questions, to drive ML
Outline

• Introduction: deep reasoning for data analysis
 • Technology overview: Rulelog, Ergo

• Case Study: financial regulatory/policy compliance

• Human-machine logic: combining English and logic

• More Case Studies: biomedical, e-commerce, defense

• Discussion and Conclusions
Frequent Pains in Analytics Today

• Shallow and disconnected
 • Failure to connect the dots well enough ("pieces on the floor")
 • Too separated from actual decision making

• Failure to leverage human expertise well enough
 • Humans know stuff that’s not in the data; often pretty complex to say
 • Programming (vs. data entry/capture) is expensive

• Inflexibility and opacity of what questions can be answered
 • Humans need explanations, must check/debug and trust, ask drill-down Q’s

• **Needed:** critical technical capabilities to unlock business value
Ergo Strengths (I)

• Represent more complex knowledge – encode & utilize it
 • Almost any sentence articulable in English natural language
 • Policies, regulations, science
 • Terminology mappings, and context, for data and system integration
 • The actual questions one wants to ask
 • *Capture & inject subject matter experts’ (SMEs’) insights, directly*

• Reason deeply – assemble & compose multiple analysis results
 • Many steps. Prioritize and weigh counter-arguments.
 • Orchestrate multiple knowledge sources & components
 • Supports high accuracy
Ergo Strengths (II)

- Explain each answer – fully yet understandably
 - Every logical step is available, and described in English natural language
 - Interactively browsable – user chooses drill downs

- Overall: *modeling* instead of *programming*
 - Faster, cheaper, more reusable
Evolution of Analytics

Flexible/Graph DBMS tools
- RDF, JSON, XML, ...

Machine Learning & Statistics tools
- Spark, R, Dato, ...

Human Expertise via Programming Alone
- in Java, Python, Clojure, F#, ...

Analytics Results & Decisions

Relational DB

Spreadsheets

Domain-specific Apps
- e.g., web logs, Twitter, Facebook
Relational DB
Spreadsheets
Domain-specific Apps
e.g., web logs,

Flexible/Graph DBMS tools
RDF, JSON, XML, ...

Machine Learning & Statistics tools
Spark, R, Dato, ...

Evolution of Analytics

"smart data"

Human Expertise via

ERGO

KB Libraries
+ Programming

Analytics Results & Decisions
+ Explanations
Ergo addresses the **3 V’s of big data**, in combination with deep reasoning

- **Variety, volume, velocity**

Reasoning scales up

- to **millions** of assertions/conclusions, for in-memory “hot zone” on one processor
- to **trillions** of assertions/conclusions, by querying external DBs
Actively Reason over Today’s Gamut of Knowledge

Graph DB & Semantic tech

Relational DB

Machine Learning

Domain Apps & Legacy

Spreadsheets

"Business Rules"

tier(X,1) \land supply(Y,X) \implies tier(Y,2)

Text & Natural Language processing

\text{Prob}_\text{N}(x) = \sum_{i=1..N} \delta_i(x) / N

Probabilistic engines

\text{p}(H|C) = \prod \text{p}(x_i|Y_j) / \sum C \prod \text{p}(x_i|Y_j)

External Info & Services

Queries

Assertions

Edits

Application Actions

Answers, Views

Decisions, Alerts

Explanations

ERGO

KB Libraries

© Copyright Coherent Knowledge Systems, LLC, 2015. All Rights Reserved.
Ergo Reasoner & Ergo Studio (IDE/UI)

• Textual Rulelog: Implementation of major research advances in logic (Rulelog) and how to map between logic and English (Textual Logic)
 • Ergo is the most complete & highly optimized implementation available
 • Rulelog significantly extends Datalog. adds Full Meta expressiveness: higher-order, general quantified formulas, exceptions, provenance, probabilistic.
 • Datalog is the logic of databases, business rule systems (production/ECA/Prolog), semantic web ontologies, and earlier-generation semantic web rules (SWRL/RIF/RuleML). Rulelog extends also declarative logic programs (LP).

• Ergo Reasoner component – with sophisticated algorithms & data structures
 • Smart cacheing with dependency-aware updating. Leverages LP & DBMS techniques.
 • Transformation, compilation, reordering, indexing, modularization, dependency analysis, performance monitoring, virtual machine, programming kernel, external import/querying
 • Java API. Other interfaces: command line, web, C, knowledge interchange (below).
 • Scales well: Millions of sentences on one processor; Trillions by querying external DBs

• Ergo Studio component – graphical Integrated Development Environment
 • Interactive editing, explanation, visualization of knowledge
 • Fast edit-test loop with award-winning toolset

• Knowledge interchange with leading and legacy systems: SQL, SPARQL, OWL, ...

• Open, standards-based approach. Builds on open source components (incl. XSB Prolog).
 • Rulelog is draft industry standard from RuleML (submission to W3C & Oasis)
Series of Advances \(\rightarrow \) Rulelog’s Core
Expressive Features

- Well-founded semantics; basic tabling algorithms
 - *Undefined* for paradox; smart cacheing; intuitionistic disjunction
- Higher-order syntax (Hilog); frame syntax
 - Associated optimizations of LP tabling etc. algorithms
- Statement id’s for meta; argumentation meta-rules for defeasibility; provenance
- General formulas with all usual classical connectives and quantifiers (omniformity)
- Restraint bounded rationality
 - Use 3rd truth value *undefined* for “don’t-care”
 - Radial, skipping; naf unsafety; external-query unsafety, unreturn
KRR Features Comparison: Rulelog Shines

<table>
<thead>
<tr>
<th>Feature</th>
<th>System</th>
<th>Rulelog Rules (e.g., Ergo)</th>
<th>Datalog Rules (e.g., Jena, SWRL, Ontobroker, SPIN)</th>
<th>Production Rules (e.g., IBM, Oracle, Red Hat)</th>
<th>Prolog (e.g., SICStus, SWI, XSB)</th>
<th>FOL & OWL-DL (e.g., Vampire, Pellet, Prover9)</th>
<th>ASP Solvers (e.g., DLV, CLASP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic & on standardization path</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>restricted case</td>
<td>restricted case</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Basic expressiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Datalog LP</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Logical functions</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• General formulas</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Full Meta expressiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Higher-order syntax, provenance</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>• Defeasibility & well founded negation</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>• Restraint bounded rationality</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>• Probabilistic</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Goal-directed</td>
<td></td>
<td>✓</td>
<td>× (except Jena)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Full LP tabling with dependency-aware updating</td>
<td></td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>× (except XSB)</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>• Polynomial time complexity</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Notes on KRR Features Comparison

- “System” means system type / approach of logical knowledge representation and reasoning (KRR).
- “Semantic” means in the sense of KRR, i.e., fully declarative and having a model theory in the logical sense.
- “FOL” means First Order Logic. “ASP” means Answer Set Programs.
 - ASP is recently emerging. The tasks for which it’s suitable are more similar to FOL than to the other systems here.
- “Standardization” here means industry standardization. “On path to” means in process of being, or already, standardized.
- “Restricted case” means for a syntactic/expressive subset.
- Event-condition-action rules in this context are similar to, and lumped in with, production rules.
- “LP” means declarative logic programs.
- Datalog means LP without logical functions. Usually this is restricted to Horn. But here we permit negation(-as-failure).
- OWL-RL is pretty much a restricted case of Datalog LP.
- “Higher-order syntax” means HiloG, which enables probabilistic – and also 1) fuzzy and 2) frame syntax cf. F-Logic.
- “Provenance” means provenance info about assertions, via properties of rule id’s that are within the logical language / KRR.
- “Full” applies to all four of the meta expressiveness features.
- Defeasibility includes flexible argumentation theories.
- “General formulas” means classical-logic-like formulas, including with head existentials and with head disjunction.
- “LP tabling” includes sophisticated: caching of intermediate reasoning results, inference control, and indexing.
- “Dependency-aware updating” means that when assertions are added or deleted, saved inferences are only recomputed if they depend on the changes to the assertions.
- Polynomial time “complexity” means worst-case computational complexity, with constant-bounded number of variables per rule. Polynomial-time is similar to database querying, and is a.k.a. “tractable”.

- Datalog X defeasibility: Ontobroker has full well founded negation.
- Prolog X defeasibility: XSB has full well founded negation.
- ASP X defeasibility: ASP has restricted defeasibility & well founded negation.
- Datalog X goal-directed: Jena has a backward engine as well as a forward engine.
- ASP X general formulas: ASP has head disjunction.
- FOL X full LP tabling with dependency-aware updating: Some FOL theorem-provers cache intermediate results in a way that is analogous to LP tabling, and some do dependency tracking but we’re not sure how analogous or sophisticated.
Outline

• Introduction: deep reasoning for data analysis
 • Technology overview: Rulelog, Ergo

• Case Study: financial regulatory/policy compliance

• Human-machine logic: combining English and logic

• More Case Studies: biomedical, e-commerce, defense

• Discussion and Conclusions
Case Study 1: Automated Decision Support for Financial Regulatory/Policy Compliance

Problem: Current methods are expensive and unwieldy, often inaccurate.

Solution Approach – using Textual Rulelog software technology:
• Encode regulations and related info as semantic rules and ontologies
• Fully, robustly automate run-time decisions and related querying
• Provide understandable full explanations in English
 • Proof: Electronic audit trail, with provenance
• Handles increasing complexity of real-world challenges
 • Data integration, system integration
 • Conflicting policies, special cases, exceptions
 • What-if scenarios to analyze impact of new regulations and policies

Business Benefits – compared to currently deployed methods:
• More Accurate
• More Cost Effective – less labor; subject matter experts in closer loop
• More Agile – faster to update
• More Overall Effectiveness: less exposure to risk of non-compliance
Demo of Ergo Suite for Compliance Automation: US Federal Reserve Regulation W

- EDM Council Financial Industry Consortium
 Proof of Concept – successful and touted pilot
 - Enterprise Data Management Council (Trade Assoc.)
 - Coherent Knowledge Systems (USA, Technology)
 - SRI International (USA, Technology)
 - Wells Fargo (Financial Services)
 - Governance, Risk and Compliance Technology Centre (Ireland, Technology)

- Reg W regulates and limits $ amount of transactions that can occur between banks and their affiliates. Designed to limit risks to each bank and to financial system.

- Must answer 3 key aspects:
 1. Is the transaction’s counterparty an affiliate of the bank?
 2. Is the transaction contemplated a covered transaction?
 3. Is the amount of the transaction permitted?

Determining Whether Regulation W Applies

Two initial questions need to be answered in determining whether a transaction is subject to Regulation W. The first is whether the transaction is between a bank and an “affiliate” of the bank. The second is whether the transaction is a “covered transaction.”

Affiliate Definition. Regulation W applies to covered transactions between a bank and an affiliate of the bank.

The definition of an affiliate for purposes of Regulation W is set forth in section 223.2. The definition is broad, and includes:

- Any company that controls the bank.
- Any company that is controlled by a company that controls the bank.
- Any company that is controlled, directly or indirectly, by trust or otherwise, by or for the benefit of shareholders who beneficially or otherwise control, directly or indirectly, by trust or otherwise, the bank or any company that controls the bank.
- Any company in which a majority of its directors, trustees, or general partners (or individuals exercising similar functions) constitute a majority of the persons holding any such office with the bank or any company that controls the bank.
- Any company, including a real estate investment trust, that is sponsored and advised on a contractual basis by the bank or an affiliate of the bank.
- Any registered investment company for which the bank or any affiliate of the bank serves as an investment adviser.
- Any unregistered investment fund for which the bank or any affiliate of the bank serves as an investment adviser, if the bank and its affiliates own or control in the aggregate more than 5 percent of any class of voting securities or more than 5 percent of the equity capital of the fund;

The Starting Point - Text of Regulation W
Demo goes here

• Note: The demo actually covers the next 10 slides that show explanation screenshots and executable rule assertions in Textual Rulelog. The deck includes those slides in order to be more self-contained. The demo also includes showing interactive syntax checking in the Ergo rule editor.
Query is asked in English

```
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>'Pacific Bank'</td>
<td>'Maui Sunset'</td>
<td>23.0</td>
<td></td>
</tr>
</tbody>
</table>

Explanation Game
See answer term as tree
User Clicks the handles to expand the Explanations
Why is the proposed transaction prohibited by Regulation W?

1. *Is the transaction’s counterparty an “affiliate” of the bank?*

 YES.

 - RegW prohibits the proposed transaction by Pacific Bank with Maui Sunset of $23.0 million
 - The proposed transaction by Pacific Bank with Maui Sunset of $23.0 million is a RegW covered transaction
 - Maui Sunset is a RegW affiliate of Pacific Bank
 - Hawaii Bank is a RegW affiliate of Pacific Bank
 - There is common control of Hawaii Bank and Pacific Bank
 - Hawaii Bank is controlled by Americas Bank
 - Pacific Bank is controlled by Americas Bank
 - Pacific Bank is a subsidiary of Americas Bank
 - Maui Sunset is advised by Hawaii Bank
 - There is a proposed loan from Pacific Bank to Maui Sunset of $23.0 million
 - There is a limit of $10.0 million for any proposed RegW covered transaction by Pacific Bank with Maui Sunset
 - The proposed transaction of $23.0 million is greater than the RegW limit of $10.0 million

And here’s why ...
Why is the proposed transaction prohibited by Regulation W?

2. *Is the transaction contemplated a “covered transaction”*?

YES.

And here’s why ...

```
RegW prohibits the proposed transaction by Pacific Bank with Maui Sunset of $23.0 million
  The proposed transaction by Pacific Bank with Maui Sunset of $23.0 million is a RegW covered transaction
    Maui Sunset is a RegW affiliate of Pacific Bank
      Hawaii Bank is a RegW affiliate of Pacific Bank
    Maui Sunset is advised by Hawaii Bank
  There is a proposed loan from Pacific Bank to Maui Sunset of $23.0 million
  There is a limit of $10.0 million for any proposed RegW covered transaction by Pacific Bank with Maui Sunset
  The proposed transaction of $23.0 million is greater than the RegW limit of $10.0 million
```
Why is the proposed transaction prohibited by Regulation W?

3. Is the amount of the transaction permitted?

And here’s why ...

The proposed transaction by Pacific Bank with Maui Sunset of $23.0 million is greater than the RegW limit of $10.0 million

NO. It went over the limit.
Why is the proposed transaction prohibited by Regulation W?

3. (continued) Why is the aggregate-affiliates limit $10 million?
Examples of the Underlying Textual Rulelog

Executable Fact Assertions

•

subsidiary(of)('Pacific Bank','Americas Bank').

•

advised(by)('Maui Sunset','Hawaii Bank').

•

bank('Hawaii Bank').

•

company('Maui Sunset').

•

capital(stock(and(surplus)))('Pacific Bank',2500.0).

•

proposed(loan) (from('Pacific Bank'))(to('Maui Sunset')) (of(amount(23.0)))
(having(id(1101))).

•

previous(loan)(from('Pacific Bank'))(to('Hawaii Bank')) (of(amount(145.0)))
(having(id(1001))).

•

proposed(asset(purchase))(by('Pacific Bank'))
(of(asset(common(stock)(of('Flixado'))))) (from('Maui Sunset'))
(of(amount(90.0)))(having(id(1202))).
Executable Assertions: non-fact Rules

/* A company is controlled by another company when the first company is a subsidiary of a subsidiary of the second company. */
@!{rule103b} /* declares rule id */
@@{defeasible} /* indicates the rule can have exceptions */
controlled(by)(?x1,?x2)
:- /* if */
 subsidiary(of)(?x1,?x3) \and
 subsidiary(of)(?x3,?x2).

/* A case of an affiliate is: Any company that is advised on a contractual basis by the bank or an affiliate of the bank. */
@!{rule102b} @@{defeasible}
affiliate(of)(?x1,?x2) :-
 (advised(by)(?x1,?x2)
 \or
 (affiliate(of)(?x3,?x2) \and advised(by)(?x1,?x3))).
Executable Assertions: Exception Rule

@!{rule104e}
@!{ready market exemption case for covered transaction}' /* tag for prioritizing */
\neg covered(transaction)(by(?x1))(with(?x2))
 (of(amount(?x3)))(having(id(?Id))) :-
 affiliate(of)(?x2,?x1) \and
 asset(purchase)(by(?x1))(of(asset(?x6)))(from(?x2))(of(amount(?x3)))
 (having(id(?Id))) \and
 asset(?x6)(has(ready(market))).

/* prioritization info, specified as one tag being higher than another */
\overrides('ready market exemption case for covered transaction',
 'general case of covered transaction').

/* If a company is listed on the New York Stock Exchange (NYSE), then the
 common stock of that company has a ready market. */
@!{rule201} @@{defeasible}
asset(common(stock)(of(?Company)))(has(ready(market))) :-
 exchange(listed(company))(?Company)(on('NYSE')).
Executable Assertions: Import of OWL

:- iriprefix fibof = /* declares an abbreviation */
 "http://www.omg.org/spec/FIBO/FIBO-Foundation/20120501/ontology/".

/* Imported OWL knowledge: from Financial Business Industry Ontology (FIBO) */
rdfs#subClassOf(fibob#BankingAffiliate, fibob#BodyCorporate).
rdfs#range(fibob#whollyOwnedAndControlledBy, fibob#FormalOrganization).
owl#disjointWith(edmc#Broad_Based_Index_Credit_Default_Swap_Contract, edmc#Narrow_Based_Index_Credit_Default_Swap_Contract).

/* Ontology Mappings between textual terminology and FIBO OWL vocabulary */
company(?co) :- fibob#BodyCorporate(?co).
fibob#whollyOwnedAndControlledBy(?sub, ?parent) :- subsidiary(of)(?sub, ?parent).

/* Semantics of OWL - specified as general Rulelog axioms */
Lessons Learned from Case Studies

Financial, E-commerce, and Defense customers benefited from:

• Agility: Flexibility and ease of authoring, fast updating
• High accuracy and transparency
 • Explanations and provenance
 • Lower risk of non-compliance or confusion
• More Cost Effectiveness – less labor, SMEs in closer loop
• Leveraging investment in Smart Data tech: RDF, SPARQL, OWL
Outline

• Introduction: deep reasoning for data analysis
 • Technology overview: Rulelog, Ergo

• Case Study: financial regulatory/policy compliance

• Human-machine logic: combining English and logic

• More Case Studies: biomedical, e-commerce, defense

• Discussion and Conclusions
Textual terminology

- Leverage Rulelog to much more simply and closely map between natural language and logic

- English phrase \leftrightarrow logical term in Rulelog
 - English word \leftrightarrow logical functor in Rulelog

- Basis for textual templates
Knowledge Authoring Process using Ergo Suite

• Start with source text in English – e.g., textbook or policy guide
 • A sentence/statement can be an assertion or a query

• Articulate: create **encoding** sentences (text) in English.
 As necessary:
 • Clarify & simplify – be prosaic and grammatical, explicit and self-contained
 • State relevant background knowledge – that’s not stated directly in the source text

• Encode: create executable logic statements
 • Each encoding text sentence results in one executable logic statement (“rules”)
 • Ergo Suite has tools and methodology

• Test and debug, iteratively
 • Execute reasoning to answer queries, get explanations, perform other actions
 • Find and enter missing knowledge
 • Find and fix incorrect knowledge
 • Optionally: further optimize reasoning performance, where critical
Knowledge Authoring Steps using Ergo Suite

Source sentences

Articulate (mainly manual)

Encoding sentences

Encode (partly automatic)

Logic statements

Test – execute reasoning (mainly automatic)

Iterate

In-development: methods to greatly increase the degree of automation in encoding
Concept: **Humagic Knowledge**

- Humagic = human-machine logic
- A humagic KB consists of a set of linked sentences
 - Assertions, queries, conclusions (answers & explanations)
- NL-syntax sentence may have 1 or more logic-syntax sentences associated with it
 - E.g., that encode it, or give its provenance
- Logic-syntax sentence may have 1 or more NL-syntax sentences associated with it
 - E.g., that result from text generation on it
- Other sentences can be in a mix of NL-syntax and logic-syntax
 - ErgoText: templates used for text interpretation and text generation
Outline

• Introduction: deep reasoning for data analysis
 • Technology overview: Rulelog, Ergo

• Case Study: financial regulatory/policy compliance

• Human-machine logic: combining English and logic

• More Case Studies: biomedical, e-commerce, defense

• Discussion and Conclusions
ErgoText: Self-documenting, templates

ErgoText:

\(\text{(The proposed transaction } ?\text{Id by } ?\text{Bank with } ?\text{Affiliate of } $?\text{Amount is a RegW covered transaction)}\)

ErgoText Template:

\[
\text{template(headbody,}
\begin{enumerate}
\item \text{(The proposed transaction } ?\text{Id by } ?\text{Bank with } ?\text{Affiliate of } $?\text{Amount is a RegW covered transaction)}\),
\end{enumerate}
\]

\[
\text{covered(proposed(transaction))}\text{(by}(?\text{Bank})\text{(with}(?\text{Affiliate})
\text{(of(amount}(?\text{Amount}))\text{(having(id}(?\text{Id})))
\text{).}
\]
Treatment Scenario 1

- A busy intern encounters an elderly woman in a rehabilitation facility complaining of knee pain.
- What treatment should be given?
- EHR records show:
 - The elderly woman is currently taking Coumadin to treat the pre-existing condition of atrial fibrillation which increases the risk of blood clot and stroke.
Which drugs are used in general to treat the chronic knee pain?

Step 1: What are possible drug classes to treat the condition?

\((?\text{drug} \text{is used to treat the particular disease chronic(knee(pain)))}) \text{ and } (?\text{drug} \text{is a generic drug}) \).

- acetaminophen
- aspirin
- celecoxib
- ibuprofen
Which drugs are used in general to treat the chronic knee pain?

Step 2: Why is the generic drug ibuprofen recommended for treating chronic knee pain?

- ibuprofen is used to treat the particular disease chronic(knee(pain))
- ibuprofen is in the anti-inflammatory class of drugs
- the anti-inflammatory class of drugs is used to treat inflammatory(disease)
- chronic(knee(pain)) is a subclass of inflammatory(disease)
Which drug classes are contraindicated for this patient?

(?drug_class is a contraindicated medication for Patient4).

?drug_class

- aspirin
- celecoxib
- ibuprofen
Why is ibuprofen contraindicated for this patient?

- ibuprofen is a contraindicated medication for Patient4
- ibuprofen aggravates the risk of bleeding for Patient4
 - ibuprofen interacts with warfarin for Patient4 to increase the risk of bleeding
 - ibuprofen and warfarin are distinct drugs
 - ibuprofen is a drug
 - warfarin is a drug
 - The drug ibuprofen increases the risk of bleeding
 - The drug warfarin increases the risk of bleeding
 - Patient4 takes warfarin as an existing medication
 - It is proposed that Patient4 takes ibuprofen as a new medication
More details: Why is ibuprofen contraindicated?

Anti-inflammatories are contraindicated for the patient because there is a drug-drug interaction between anticoagulants and anti-inflammatories. Anti-inflammatories increase bleeding risk to patients taking anticoagulants.

- Ibuprofen interacts with warfarin for Patient4 to increase the risk of bleeding
 - Ibuprofen and warfarin are distinct drugs
 - Ibuprofen is a drug
 - Warfarin is a drug
- The drug ibuprofen increases the risk of bleeding
 - Ibuprofen is a drug
 - Anti-inflammatory is a class of drugs
 - The drug class anti-inflammatory increases the risk of bleeding
 - Ibuprofen is in the anti-inflammatory class of drugs
- The drug warfarin increases the risk of bleeding
 - Warfarin is a drug
 - Anticoagulant is a class of drugs
 - The drug class anticoagulant increases the risk of bleeding
 - Warfarin is in the anticoagulant class of drugs
Easily query the database for both clinical decision support and education.

What conditions can a particular drug treat?

```
(Advil is used to treat the disease class ?disease_class\).
```

<table>
<thead>
<tr>
<th>?disease_class</th>
</tr>
</thead>
<tbody>
<tr>
<td>headache</td>
</tr>
<tr>
<td>pain</td>
</tr>
<tr>
<td>inflammatory(disease)</td>
</tr>
<tr>
<td>muscle(ache)</td>
</tr>
</tbody>
</table>

- Advil is used to treat the disease class muscle(ache)
- Advil is in the analgesic class of drugs
- a brand name for ibuprofen is Advil
- ibuprofen is in the analgesic class of drugs
- the analgesic class of drugs is used to treat muscle(ache)
Case Study: E-commerce marketing: Configuring Complex Products

- Very large manufacturing company
- Product catalog: highly technical, complex
- Over 1 Million products, in over 50 countries
- Problem: Creating configurators and updating catalog too slow & costly. Thus siloed by sales regions.
- Solution (with smart data partner) on $multi-Billion segment
 - Developed product ontology: compatible with legacy and standards
 - Converted all product data into live triple store
 - Added configuration rules, in Rulelog, on top of that catalog
 - Leveraged Ergo expressiveness and RDF import capability
- Benefits: faster, cheaper, agile updating, reusable globally
 - Enable greatly enhanced up-sell and cross-sell, across product lines
E-commerce marketing: Pricing & Promotions

• Example 1: Loyal customer gets 5% discount

 price(of(item(\textit{?i}))(\text{for(customer(\textit{?c}))}(\text{is(\textit{?p})))) :-

 normal(price)(of(item(\textit{?i}))(\text{is(\textit{?pn})}) \text{ and}

 \text{?c(is(a(loyal(customer))))) \text{ and}

 \text{?p is ?pn * (1 - 0.05)}.{\text{}}

• Example 2: New customer gets $20 coupon on first $100 of purchases

• Via API, query Ergo as business logic within application managing overall customer experience
Data cleaning – examples

• An Ergo rule can detect a schema violation
 – implausibly(high(salary))(?person,XYZCo,2015) :-
 employee(?person,XYZCo,?position),
 annual(salary)(?person,XYZCo,2015,?amount(USD)),
 ?amount > 500000,
 \neg CXO(?position).

• An Ergo rule can treat a missing value, e.g., draw an inference about it
 – @’presume device owner is application owner’
 application(owner)(?person,?app) :-
 smartphone(owner)(?person,?device),
 installed(application)(?app,?device).
Case Study: Defense Intelligence Analysis

• Challenge: managing, accessing, integrating knowledge
 • Huge amounts of information as text, RDF, triple stores

• Current text extraction methods:
 • Noisy/inaccurate, shallow, patchy
 • Lacks contextualization, e.g., is a date past, present, or future?
 • Events are more complex than Entities, and are only shallowly treated
Rulelog enriches Text Extraction

• Leverage Rulelog’s high expressiveness and flexibility

• Mappings between multiple terminologies or ontologies

"moving a bomb" implies "transporting weaponized material"
Lessons Learned from Case Studies

Financial, E-commerce, and Defense customers benefited from:

- Agility: Flexibility and ease of authoring, fast updating
- High accuracy and transparency
 - Explanations and provenance
 - Lower risk of non-compliance or confusion
- More Cost Effectiveness – less labor, SMEs in closer loop
- Leveraging investment in Smart Data tech: RDF, SPARQL, OWL
Outline

• Introduction: deep reasoning for data analysis
 • Technology overview: Rulelog, Ergo

• Case Study: financial regulatory/policy compliance

• Human-machine logic: combining English and logic

• More Case Studies: biomedical, e-commerce, defense

• Discussion and Conclusions
Ergo Strengths (I) [repeat slide]

- Represent more **complex** knowledge – encode & utilize it
 - Almost any sentence articulable in English natural language
 - Policies, regulations, science
 - Context and mappings for data and system integration
 - The actual questions one wants to ask
 - *Capture & inject subject matter experts’ (SMEs’) insights, directly*

- Reason **deeply** – assemble & compose multiple analysis results
 - Many steps. Prioritize and weigh counter-arguments.
 - Orchestrate multiple knowledge sources & components
 - Supports high accuracy
Ergo Strengths (II) [repeat slide]

• **Explain** each answer – fully yet understandable
 • Every logical step is available, and described in English natural language
 • Interactively browsable – user chooses drill downs

• Overall: *modeling* instead of *programming*
 • Faster, cheaper, more reusable
Topics for Discussion

• How might Rulelog/Ergo apply in your work?

• Stuff we didn’t have time to get into
 – More domains: continuing education, financial reporting, natural language human-computer interaction (NL HCI), insurance, games, Internet of Things (IoT)
 – Probabilistic reasoning
Thank you.

Deep Reasoning for Advanced Analytics

http://coherentknowledge.com

Disclaimer: All brands, logos and products are trademarks of their respective companies.
OPTIONAL/BACKUP SLIDES
FOLLOW
Leverage Hilog and restraint

Probabilistic knowledge has tuple of parameters

- Prob(<formula-term>, <parameters>)
- Flexible in regard to what are the <parameters>:
 - Point value
 - Interval
 - Mean, standard-deviation
 - Interval, confidence-level, sample-size, statistical-technique

Evidential reasoning: weighted or prioritized combination

Distribution semantics: semantics/foundation of Probabilistic LP
END of OPTIONAL/BACKUP SLIDES