
Advanced Knowledge Base

Debugging for Rulelog†

Carl Andersen1, Brett Benyo1, Miguel Calejo2,3,

Mike Dean1,* Paul Fodor3,4, Benjamin N. Grosof3,5,

Michael Kifer3,4, Senlin Liang4, Terrance Swift3,6

†Work funded in part by Vulcan, Inc.

Sequence of authors is alphabetic.

1 Raytheon BBN Technologies, USA

2 Declarativa, Portugal

3 Coherent Knowledge Systems, USA

4 Stony Brook University, USA

5 Benjamin Grosof & Associates, USA

6 CENTRIA, Universidade Nova de Lisboa, Portugal

Presentation (15-min.) for RuleML Challenge, RuleML-2013 Symposium

July 11, 2013, Seattle, Washington, USA

http://2013.ruleml.org/

Rulelog: Overview
• First KRR to meet central challenge:

rich -- higher order logic formulas, incl. as target for text interpretation

+ defeasible -- handle exceptions, change in K, change in world

+ tractable

• New rich logic: based on databases, not classical logic

• Expressively extends normal declarative logic programs (LP)

• Transforms into LP (the logic of DB’s (SQL, SPARQL) and pure Prolog)

• In draft as industry standard (RuleML submission to W3C RIF and …)

• Associated new reasoning techniques to implement it

• Prototyped in Vulcan’s SILK

• Mostly open source: Flora-2 and XSB Prolog

• Applications: college-level science (e.g., AP Biology), legal analysis and
reasoning (Regulation W), financial compliance (Financial Industry Business
Ontology), health care treatment protocols, national intelligence, privacy

Rulelog: Overview
• Defeasibility based on argumentation theories (AT) [Wan, Grosof, Kifer, Fodor 2009]

• Meta-rules specify principles of debate, thus when rules have exceptions

• Prioritized conflict handling. Ensures consistent conclusions. Efficient, flexible,
sophisticated defeasibility.

• Restraint: semantically clean bounded rationality [Grosof & Swift, AAAI-13]*

• Leverages “undefined” truth value to represent “not bothering”

• Extends well-foundedness in LP

• Omniformity: higher-order logic formula syntax, incl. hilog, rule id’s

• Omni-directional disjunction. Skolemized existentials. [Grosof (invited), RuleML-2013]

• Avoids general reasoning-by-cases (cf. unit resolution).

• Sound interchange of K with all major standards for sem. web K

• Both FOL & LP, e.g.: RDF(S), OWL-DL, SPARQL, CL

• Reasoning techniques based on extending tabling in LP inferencing

• Truth maintenance, justifications incl. why-not, trace analysis for KA debug, term
abstraction, delay subgoals

For more info, see [Grosof et al, AAAI-13 Tutorial]* – largely about Rulelog * preprint/prelim-v. already avail.

Rulelog: Overview
• Classical LP (well-founded semantics)

• Frames (F-logic) and Higher-order (Hilog)

red('blood cell') ## eukaryotic(cell). // subClassOf relationship in frame syntax

• Omniformity: classical-logic formulas including existential and universal
quantifiers

@[tag->r1, source->'A cell has a nucleus'] /* ==> means strong implication */

forall(?x1)^(cell(?x1) ==> exist(?x2)^((nucleus(?x2) and have(?x1,?x2)))).

• Defeasibility with argumentation theories (rule identifiers, defaults, defeasible
candidates, conflicts, overrides, refutation, rebuttal)

@[tag->r2, source->'A eukaryotic cell during anaphase has no nucleus']

forall(?x1)^(anaphase(?x1) ==> forall(?x2)^(eukaryotic(cell)(during)(?x2,?x1)

==> neg exist(?x3)^(nucleus(?x3) and have(?x2,?x3)))).

\overrides(r2, r1).

@[tag->r3, source->'A red blood cell has no nucleus']

forall(?x1)^(red('blood cell')(?x1) ==> neg exist(?x2)^(nucleus(?x2) and
have(?x1,?x2))).

\overrides(r3,r1).

• Bounded rationality (radial restraint): radial depth limit for search

Debugging for Rulelog
• Justify answers

• Pinpoint wrong or missing knowledge

• Cope with potential runaway and incompleteness in
inferencing

Via a set of techniques:

• Justifications: incl. of why-not. Leverages rule id’s.

• Profile: memory used, compute time, # rules, usage or rules

• Forestlog trace: view subgoaling and tables. Drill down.

• Terminyzer: analyze and diagnose non-termination

• SCC analysis of unstratified NAF loops

• Restraint (radial, skipping, unsafety) – valves that ensure
tractability. undefined represents “not bothering”.

Biology Reasoning Example
• Biology information about cells and nuclei:

“A eukaryotic cell has a nucleus.”

@[id->i1, tag->r1] forall(?x)^(?x(is(a(eukaryotic(cell)))) ==> ?x(has(a(nucleus))))

“A red blood cell has no nucleus.”

@[id->i2, tag->r2] forall(?x)^(?x(is(a(red(blood(cell))))) ==> neg ?x(has(a(nucleus))))

“A eukaryotic cell during anaphase has no nucleus.”

@[id->i3, tag->r3] forall(?x)^(?x(is(a(eukaryotic(cell(during(anaphase)))))) ==> neg ?x(has(a(nucleus))))

• Prioritization:

\overrides(r2,r1);

\overrides(r3, r1);

• Ontology information:

@[strict] red(blood(cell)) :: eukaryotic(cell);

cell52 : red(blood(cell));

@[strict] eukaryotic(cell(during(anaphase))) :: eukaryotic(cell) ;

?x(is(a(?c))) <==> ?x : ?c ;

cell41(is(a(eukaryotic(cell)))) ;

cell63(is(a(eukaryotic(cell(during(anaphase)))))) ;

• Queries:

?- ?x(has(?y(nucleus))); // What has or doesn't have a nucleus?

?- cell41(has(a(nucleus))) ; // is true

?- neg cell52(has(a(nucleus))) ; // is true, and without the neg is false

Omniform (omni) transformation

Classical-logic formulas with quantifiers are transformed into
directional rules:

// Source English text: “A eukaryotic cell has a nucleus.”

// Pretransform logical form

forall(?x1)^(?x1(is(a(eukaryotic(cell)))) ==>

?x1(has(a(nucleus)))).

// Omni transform: logical equivalency

neg ?x1(is(a(eukaryotic(cell)))) or ?x1(has(a(nucleus))).

// Post Omni transform directional rules

?x1(has(a(nucleus))) :- ?x1(is(a(eukaryotic(cell)))) .

neg ?x1(is(a(eukaryotic(cell)))) :- neg ?x1(has(a(nucleus))) .

Demo time: The Basic Panes/Views
Project Explorer – shows the LP files

and folders, Activity View, Engine

The Editing

Pane

The Console Pane, Justification Viewer, Ontology viewer, Search

Query View –

type in queries

and the

answers are

displayed

below

8

?- neg cell52(has(a(nucleus))) ; // True

Demo Time: Query Justification

Demo Time: NL Query Justification

Demo time: Syntax Errors
11

Parsing errors are displayed with a red X icon in the left column of

the text editor window. Error details are displayed when the

mouse is hovered over the red X icon, or in the Eclipse Problems

View (Window -> Show View -> Other -> General -> Problems)

Demo time: Checkers and Warnings
12

Warnings are displayed with a yellow triangle icon on the left

column of the text editor window. Hovering the mouse over a

warning marker will give details. Double click on a warning marker

to access a dialog allowing to ignore certain warnings

Non-Termination Analysis
• Knowledge bases are typically complex, large and unfriendly to

domain knowledge experts who know little about engine’s evaluation
strategy  Non-termination happens more often, hard to debug

• Causes:
• Loops:

p(?X) :- p(?X).

• Solution: tabling caches calls and answers (evaluation terminates if there are finitely
many subgoals and answers)

• Infinitely many tabled subgoals:

p(?X) :- p(f(?X)).

• The goals to be tabled: p(a), p(f(a)), p(f(f(a))), ...

• Solution: subgoal abstraction to a threshold. E.g., for threshold = 2, then p(f(f(f(a))))
is abstracted to p(f(f(?X))), ?X = f(a)

• Infinitely many answers:

p(a). p(f(?X)) :- p(?X).

• The answers to be derived: p(a), p(f(a)),…

• Solution: none (i.e., halting problem: whether a program has a finite number of
answers is undecidable).

• Unexpected non-termination (bug): we help the user to deal with the issue: find
non-termination recursion and bounded rationality

Forest Logging
• Tabling needs no introduction.

• Forest logging is new:

• Bounded rationality (radial restraint): radial depth limit for search

Events Logs

Calls to tabled subgoals

E.g. parent calls child
tc(child, parent, status, timestamp)
nc(child, parent, status, timestamp)
status = new, complete, incomplete

Answer derivations

E.g. ansr is derived for sub
na(ansr, sub, timestamp)
nda(ansr, sub, delayed_lits, timestamp)

Return answers to consumers

E.g. ansr for child is retuned to

parent

ar(ansr, child, parent, timestamp)
dar(ansr, child, parent, timestamp)

Subgoal completions

E.g. sub is completed
cmp(sub, scc_num, timestamp)
cmp(sub, ec, timestamp)

Non-Termination Analysis
• Unfinished subgoal: not all its answers have been derived.

unfinished(Child,Parent,Timestamp) :-

(tc(Child,Parent,Stage,Timestamp) ; nc(……)),

(Stage == new ; Stage == incmp),

not_exists(cmp(Child,SCCNum,Timestamp1)).

Here, not_exists is the XSB well-founded negation operator, and it

existentially quantifies SCCNum and Timestamp1.

• Unfinished(child,parent,timestamp) says that

• Subgoal parent calls subgoal child

• Neither child nor parent have been completely evaluated

• The sequence of unfinished call, sorted by timestamp, is

the exact sequence of unfinished tabled subgoals causing

a non-termination

More information

• Coherent Knowledge Systems (start-up by members of

former SILK team): http://coherentknowledge.com

• SILK (Vulcan Inc.): http://silk.semwebcentral.org

• Flora-2 (open source): http://flora.sourceforge.net

• XSB Logic Programming and Deductive Database system

(open source): http://xsb.sourceforge.net

http://coherentknowledge.com/
http://silk.semwebcentral.org/
http://flora.sourceforge.net/
http://xsb.sourceforge.net/

