R - :
Advanced Knowledge Base

Debugging for RulelogT

Carl Andersen?, Brett Benyo!, Miguel Calejo??3,
Mike Deanl,* Paul Fodor3#4, Benjamin N. Grosof3>,
Michael Kifer34, Senlin Liang#, Terrance Swift3°

TWork funded in part by Vulcan, Inc.
Sequence of authors is alphabetic.
1 Raytheon BBN Technologies, USA
2 Declarativa, Portugal
3 Coherent Knowledge Systems, USA
4 Stony Brook University, USA
5 Benjamin Grosof & Associates, USA
6 CENTRIA, Universidade Nova de Lisboa, Portugal

Presentation (15-min.) for RuleML Challenge, RuleML-2013 Symposium
July 11, 2013, Seattle, Washington, USA

http://2013.ruleml.org/

L
Rulelog: Overview

- First KRR to meet central challenge:
rich -- higher order logic formulas, incl. as target for text interpretation
+ defeasible -- handle exceptions, change in K, change in world
+ tractable

- New rich logic: based on databases, not classical logic

- Expressively extends normal declarative logic programs (LP)

- Transforms into LP (the logic of DB’s (SQL, SPARQL) and pure Prolog)
- In draft as industry standard (RuleML submission to W3C RIF and ...)
- Associated new reasoning techniques to implement it

- Prototyped in Vulcan’s SILK
- Mostly open source: Flora-2 and XSB Prolog

- Applications: college-level science (e.g., AP Biology), legal analysis and
reasoning (Regulation W), financial compliance (Financial Industry Business
Ontology), health care treatment protocols, national intelligence, privacy

L
Rulelog: Overview

Defeasibility based on argumentation theories (AT) [wan, Grosof, Kifer, Fodor 2009]
- Meta-rules specify principles of debate, thus when rules have exceptions

- Prioritized conflict handling. Ensures consistent conclusions. Efficient, flexible,
sophisticated defeasibility.

Restraint: semantically clean bounded rationality [Grosof & Swift, AAAI-13]*

- Leverages “undefined” truth value to represent “not bothering”

- Extends well-foundedness in LP

Omniformity: higher-order logic formula syntax, incl. hilog, rule id’s

- Omni-directional disjunction. Skolemized existentials. [Grosof (invited), RuleML-2013]
- Avoids general reasoning-by-cases (cf. unit resolution).

Sound interchange of K with all major standards for sem. web K

- Both FOL & LP, e.g.: RDF(S), OWL-DL, SPARQL, CL

Reasoning techniques based on extending tabling in LP inferencing

- Truth maintenance, justifications incl. why-not, trace analysis for KA debug, term
abstraction, delay subgoals

For more info, see [Grosof et al, AAAI-13 Tutorial]* — largely about Rulelog * preprint/prelim-v. already avail.

L
Rulelog: Overview

- Classical LP (well-founded semantics)
- Frames (F-logic) and Higher-order (Hilog)
red('blood cell') ## eukaryotic(cell). // subClassOf relationship in frame syntax

- Omniformity: classical-logic formulas including existential and universal
quantifiers

@[tag->rl, source->'A cell has a nucleus'] /* ==> means strong implication */
forall(?x1)™(cell(?x1) ==> exist(?x2)"((nucleus(?x2) and have(?x1,?7x2)))).

- Defeasibility with argumentation theories (rule identifiers, defaults, defeasible
candidates, conflicts, overrides, refutation, rebuttal)

@[tag->r2, source->'A eukaryotic cell during anaphase has no nucleus']
forall(?x1)anaphase(?x1) ==> forall(?x2)"(eukaryotic(cell)(during)(?x2,7x1)
==> neg exist(?x3)(nucleus(?x3) and have(?7x2,?7x3)))).
\overrides(r2, rl).
@[tag->r3, source->'A red blood cell has no nucleus']

forall(?x1)™(red('blood cell')(?x1) ==> neg exist(?x2)"nucleus(?x2) and
have(?x1,7x2))).

\overrides(r3,rl).
- Bounded rationality (radial restraint): radial depth limit for search

L
Debugging for Rulelog

- Justify answers
- Pinpoint wrong or missing knowledge

- Cope with potential runaway and incompleteness in
iInferencing

Via a set of techniques:

- Justifications: incl. of why-not. Leverages rule id’s.

- Profile: memory used, compute time, # rules, usage or rules
- Forestlog trace: view subgoaling and tables. Drill down.

- Terminyzer: analyze and diagnose non-termination

- SCC analysis of unstratified NAF loops

- Restraint (radial, skipping, unsafety) — valves that ensure
tractability. undefined represents “not bothering”.

L
Biology Reasoning Example

- Biology information about cells and nuclei:
“A eukaryotic cell has a nucleus.”
@[id-=11, tag->r1] forall(?x)"(?x(is(a(eukaryotic(cell)))) ==> ?x(has(a(nucleus))))
“A red blood cell has no nucleus.”
@[id->12, tag->r2] forall(?x)"(?x(is(a(red(blood(cell))))) ==> neg ?x(has(a(nucleus))))
“A eukaryotic cell during anaphase has no nucleus.”
@[id->13, tag->r3] forall(?x)"(?x(is(a(eukaryotic(cell(during(anaphase)))))) ==> neg ?x(has(a(nucleus))))
- Prioritization:
\overrides(r2,rl);
\overrides(r3, rl);
- Ontology information:
@|strict] red(blood(cell)) :: eukaryotic(cell);
cell52 : red(blood(cell));
@|strict] eukaryotic(cell(during(anaphase))) :: eukaryotic(cell) ;
?X(is(a(?c))) <==>?x:?c;
cell41(is(a(eukaryotic(cell)))) ;
cell63(is(a(eukaryotic(cell(during(anaphase)))))) ;
- Queries:
?- ?x(has(?y(nucleus))); // What has or doesn't have a nucleus?
?- cell4l(has(a(nucleus))) ; //is true
?- neg cell52(has(a(nucleus))) ; //is true, and without the neg is false

L
Omniform (omni) transformation

Classical-logic formulas with quantifiers are transformed into
directional rules:

/I Source English text: “A eukaryotic cell has a nucleus.”

I/ Pretransform logical form

forall(?x1)N?x1(is(a(eukaryotic(cell)))) ==>
?x1(has(a(nucleus)))).

// Omni transform: logical equivalency

neg ?x1(is(a(eukaryotic(cell)))) or ?x1(has(a(nucleus))).

// Post Omni transform directional rules
?x1(has(a(nucleus))) :- ?x1(is(a(eukaryotic(cell)))) .
neg ?x1(is(a(eukaryotic(cell)))) :- neg ?x1(has(a(nucleus))) .

B
Demo time: The Basic Panes/Views

Project Explorer — shows the LP files
and folders, Activity View, Engine

= SILK - examples/annotations.silk - Eclipse SDK [=EEE]
File Edit Mavigate Search Project AURA SILK Run Window Help

M RRE QA B E oD 5 ()& e
[t5 Proje 22 ,AActi\.r] = O||.4 annotations.silk &2 = B || o Query View 2 =B

<}===> = <>[rdfs:comment->"test annotations”, - i ® <}=={> g T
owl:versionInfo-»"8Id: annotations.silk 1595 2@818-84-11 15:45:457 mdean §"

examples - Q y V —_—
= ATCK :- prefix do=<http://purl.org/dc/elements/1.1/> ; Query: ﬁ uer IeW

aura

aura-translated-snaps @[id-><#rulel>] q(?x) - p(3) 3 7% Why type in queries

= cyc-tinykb-snapshot . N . N .
= demo SWC2000 @[tag->dri] r(?x) :- g(?x) ; R

= demo_SEMTECH2010 @[id-><#rulez:, 3 and the
L (= externalPredicates tag->tag2] s(?x) :- r(?x) ; hinid
The Editing & answers are

@[strict, dc:icreator->"Mike Dean"] p(5) ;

Pane *@[persistent] () ; d|Sp|ayed

[process-ontology-sna

= queryResults

o below
ol agesilk

£ aggregatesilk
af. andersilk

o annotations.silk
£ authors.silk

of betweensilk

i biclogy-kb.silk
£ cardinality.silk
of. classes-as-silk.silk

-

< [T 1 »

of comment.silk -

-, comments.silk 2. Problems [77 SILK Command Shell | T SILK Engine |, Locale View [, Ontology View | El Console 2 =g

. datatypeguards.silk SILK Command Shell ER Eﬁ| = I i

o datetimesilk silk> pla) =

8] david.fir pla:

sé david.silk 11:32:56,542 1 INFO [Thread-26](Enginelmpl]: Model317_n_10000_main_p(a)_null.flr loaded

4. david2.silk 11:32:56,543 : INFO [Thread-26][Enginelmpl]: locking for new persistent queries

afl, equality.silk _|It;aded

o families.silk i i ~
4 T » ‘ b
it EYELERA

The Console Pane, Justification Viewer, Ontology viewer, Search

L
Demo Time: Query Justification

?- neg cell52(has(a(nucleus))) ; // True

= B 3 neg cell5s2(has(a(nudeus)))
E} :! ﬂ celSZ(ns(a(red(bloOd(Cel))») B True]i‘[era]
. B3 cei52(s(a{red({plood(cel))))) B False literal
E] G & ell52 # red(blood(cell))

“F cell52 # red(blood(cell) F Fact

E] -] ﬂ cell52(is(a(eukaryotic(cell))) A True rule body (argument) supporting a literal
#- 0 [cell52(s(a(eukaryotic(cell)))) P Prioritization rule between two rule tags
= [5 naf defeated 4 Refutation: another argument on the other
= 0 A cels2(s(a(red(blood(cel)))) side had a higher priority
@ P sik:overrides(r2, r1) I Live argument

#- 5 cels2(s(a(red(lood(cel))))) # There are more arguments to see (pro, con, both)

L
Demo Time: NL Query Justification

4 ! (5 4 It is not the case that cell52 has a nucleus

4 1 £ ceii52is a red blood cell 5 True ll_teral
4 [5 cell52 is a red blood cell 5 False literal
4 [3 3 cells2 # red(blood(cell) F Fact
F° celio2 ¢ red(bloodicel) A True rule body (argument) supporting a literal
» [5 red blood cell S
> B cell52 has no nucleus P Prioritization rule between two rule tags
4 m} [celi52 is a eukaryotic cell 4 Refutation: another argument on the other
4 [[3 cell52 is a eukaryotic cell side had a higher priority
4[5 4 cell52 # evkanyotic(cell) ! Live argument
4[5 4 cell52 # red(blood{ceil))
F cells2 # red(bloodicell) * There are more arguments to see (pro, con, both)

4 [5 red(blood(cell)) ## eukaryotic(cell)
F red(blood(cell)) ## eukaryoticicell)
> {5 eukaryotic cell
4 [§ This argument was defeated
> B cell52 has no nucleus
4 B f celi52is ared blood cell
4 2 12 has a higher priority than rl

' 2 has a higher priority than rl

v I3 cell52 s a red blood cell

Demo time: Syntax Errors

Parsing errors are displayed with a red X icon in the left column of
the text editor window. Error details are displayed when the
mouse is hovered over the red X icon, or in the Eclipse Problems
View (Window -> Show View -> Other -> General -> Problems)

File Edit Navigate Search Project Run AURA SILK Window Help

D E-HREE G- B85~ Heflro ooy 3 (4 SIK)& Java
& Proj 8 :__,.&Actiﬂ = 8.4 annotationssilk FOllgoxNnh =0
G| & T|| <>[rdfs:comment->"test annotations", am =
v & owl2rdinrif - owl:versionInfo->"$Id: annotations.silk 1595 201@-@4-11 15:45:45Z mdean $ iHExS %

. © & process-ontology- P

. & queryResults | i- prefix dc=<http://purl.org/dc/elements/1.1/> ; R
b Eif | Query:

= .4 agesilk || @[id-><#rulel>] q(?x) :- p(?x) ; St
+ aggregatesilk i

.4 andorsilk | @[tag->dri]l r(?x) - q(?x) ;

! 5. annotations.silk i

. authorssilk | @[id-><#rule2>,

o+ between.silk /@ tag-»>tag2] s(?x :- r(?x) ; =

.4, biology-kb.silk

f o4 cardinalitysilk | @[strict, dc:creator->"Mike Dean"] pi1(5) ;

1 £ classes-as-silksilk

o4 comment.silk // This specifies a persistent query, which is automatically executed after

.4 comments.silk | // each distinct update to the rule base loaded in the engine

5 o datatypeguardssil | @[persistent] ?- q(?x) ;

. datetimesilk il

david flr <« T | »

| ok aavidsikk (&L Problems 5t [SILK Command Shell| .4 Locale View| .4 Ontology View| .4, Justification View| .4 Table Dump View| [SILK Engine| B Console| — O
i::ﬁi::ze_m.sm : 1 error, 0 warnings, 0 others . -
. equality.silk || Description ' Resource Path i ~ Locatior
./ familiessilk {| @ Emors(l item)

4 families2silk | @ Encountered " "-"":- "" at line 11, column 19. annotations.silk /examples fexampl
familiesZsilkpr]

] o/ families3silk

. families-graphsilk

4 family.silk o

e]y A 1 ; 4
2 = examples

Demo time: Checkers and Warnings

Warnings are displayed with a yellow triangle icon on the left

column of the text editor window. Hovering the mouse over a
warning marker will give details. Double click on a warning marker
to access a dialog allowing to ignore certain warnings

File Edit Navigate Search Project Run AURA SILK Window Help

ifrEr-lEe -

ﬁ&’]ava

BaProj 2 5‘Eﬁ.tf\cti\ﬂ W

Bele

4

= owl2rlinrif -
= process-ontology-
= gueryResults

= rif

o4 age.silk

.4, aggregate silk

.4 andor.silk

+f. annotations.silk
/. authors.silk

.. between.silk

4. biology-kb.silk
o cardinalitysilk

o classes-as-silksilk
o commentsilk

. comments.silk

.4 datatypeguards.sil
. datetime.silk
david.fir

o7 david.silk

.4 david2.silk

.. ecommerce_01silk
£ equality.silk

£ familiessilk

£ families2.silk
families2.silkprj
£ families3.silk

4 families-graph.silk

£ family.silk N
I »

{lle @[id-><#rule1>] q(?x)

e |

: t->"test annotations”, P
owl:versionInfo->"$Id: annotations.silk 1595 2016-04-11 15:45:45Z mdean §

1- prefix dc=<http://purl.org/dc/elements/1.1/> ;
i- p(2x)

@ltag->drl] r(?x) :- q(?x) ;
L@[id-><#rule2>, |tag->tag2] s(?x) :- r(?x) ;

@[strict, dc:creator->"Mike Dean"] pi1(5) ;

// This specifies a persistent query, which is automatically executed after

// each distinct update to the rule base loaded in the engine
@[persistent] ?- q(?x) ;

R 0

£Q = =5

= ||

iHEax"S %
e

Quay:‘

b

[Problems 2 [SILK Command Shell| .4 Locale View| % Ontology View| .4, lustification View| .4 Table Dump View| [SILK Engine| Bl Console| = &

-

0 errors, 1 warning, 0 others @
' Description 2 | Resource Path Locatior
& Warnings (1 item)
& Body literal: p(?x) does not match any head literal or builtin (line 6) annotations.silk /examples fexampl

i

Writable Insert 10:17

L
Non-Termination Analysis

- Knowledge bases are typically complex, large and unfriendly to
domain knowledge experts who know little about engine’s evaluation
strategy = Non-termination happens more often, hard to debug

- Causes:
- Loops:
p(?X) :- p(?X).
- Solution: tabling caches calls and answers (evaluation terminates if there are finitely
many subgoals and answers)
- Infinitely many tabled subgoals:
P(?X) :- p(f(?X)).
- The goals to be tabled: p(a), p(f(a)), p(f(f(a))), ...
- Solution: subgoal abstraction to a threshold. E.g., for threshold = 2, then p(f(f(f(a))))
Is abstracted to p(f(f(?X))), ?X =f(a)
- Infinitely many answers:
p@). p(f(?X)) :- p(?X).
- The answers to be derived: p(a), p(f(a)),...
- Solution: none (i.e., halting problem: whether a program has a finite number of
answers is undecidable).

« Unexpected non-termination (bug): we help the user to deal with the issue: find
non-termination recursion and bounded rationality

R - :
Forest Logging

- Tabling needs no introduction.
- Forest logging is new:

Calls to tabled subgoals tc(child, parent, status, timestamp)

E.g. parent calls child nc(child, parent, status, timestamp)
status = new, complete, incomplete

Answer derivations na(ansr, sub, timestamp)

E.g. ansr is derived for sub nda(ansr, sub, delayed_lits, timestamp)

Return answers to consumers ar(ansr, child, parent, timestamp)
E.g. ansr for child is retuned to dar(ansr, child, parent, timestamp)

parent
Subgoal completions cmp(sub, scc_num, timestamp)
E.g. sub is completed cmp(sub, ec, timestamp)

- Bounded rationality (radial restraint): radial depth limit for search

L
Non-Termination Analysis

- Unfinished subgoal: not all its answers have been derived.

unfinished(Child,Parent, Timestamp) :-
(tc(Child,Parent,Stage, Timestamp) ; nc(----+-),
(Stage == new ; Stage == incmp),
not_exists(cmp(Child,SCCNum, Timestamp1l)).

Here, not_exists is the XSB well-founded negation operator, and it

existentially quantifies SCCNum and Timestampl.

- Unfinished(child,parent,timestamp) says that
- Subgoal parent calls subgoal child
- Neither child nor parent have been completely evaluated

- The sequence of unfinished call, sorted by timestamp, is
the exact sequence of unfinished tabled subgoals causing
a non-termination

More Information

- Coherent Knowledge Systems (start-up by members of
former SILK team): http://coherentknowledge.com

- SILK (Mulcan Inc.): http://silk.semwebcentral.org
- Flora-2 (open source): http://flora.sourceforge.net

- XSB Logic Programming and Deductive Database system
(open source): http://xsb.sourceforge.net

http://coherentknowledge.com/
http://silk.semwebcentral.org/
http://flora.sourceforge.net/
http://xsb.sourceforge.net/

