Survey of Knowledge Representations for Rules and Ontologies

Benjamin Grosof*

October 24, 2013
Ontolog Forum‡
Globally accessible webconference session

and
Coherent Knowledge Systems http://www.coherentknowledge.com

‡ http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_10_24
Concept of KR

- KR = Knowledge Representation
- A KR S is defined as a triple (LA, LC, |=), where:
 - LA is a formal language for specifying sets of assertion statements
 - LC is a formal language for specifying sets of conclusion statements
 - LC is not necessarily even a subset of LA. E.g., in declarative logic programs (LP). In first-order logic (FOL), LC is the same as LA.
 - |= is the entailment relation.
 - A |= C means C is sanctioned as a conclusion from the set of assertions A.
 - Conc(A,S) stands for the set of conclusions that are entailed by A in KR S. We assume here that Conc is a function.
 - Typically, e.g., in FOL and LP, entailment is defined formally in terms of models, i.e., truth assignments that satisfy the premises and meet other criteria.
Background: Example KR’s

1. Relational databases: relational algebra, cf. SQL
 • A sub-kind of declarative Logic Programs (function-free Horn)
2. Mathematical classical logic: first-order logic (FOL), higher-order logic. *Most people learn it in school.*
 • E.g., used in program verification, and planning.
3. Rules in various flavors
 • Central abstraction: declarative Logic Programs (LP)
 • *Most people do NOT learn LP in school*
 • Key extension: Rulelog
4. Many others:
 • Bayesian probabilistic networks, Probabilistic LP, Markov Logic Networks, fuzzy logic; inductive, possibilistic, …
 • Modal logics, description logics, temporal logics, …
 • Answer Set Programs (another extension of LP)
What are “Ontology” and “Rule”, in general

- Ontology is a purpose/subset of knowledge: definitional in flavor
 - A key aspect is: terminology
 - Ex.: Lions are a subcategory within felines
 - Ex.: Every health care visit has a required copayment amount

- Rule is an if-then logical implication. A fact is a special case of a rule.
 - Ex.: During the mitosis phase of an animal’s cell cycle, all DNA is replicated
 - Ex.: AAA members get a weekend discount of 20% on suites, at hotel chain X

- Almost any kind of rules – or other logical – knowledge can be viewed as consisting of definitions … and thus “ontological” in a sense
 - Necessary and sufficient conditions for when a concept/relation/expression is true/false. E.g., cf. “concept learning” in empirical induction.

- “Rules” and “ontologies” are overlapping, not disjoint! (in general)

- Some KR’s are aimed at particular kinds of ontological knowledge
 - E.g., Description Logic
 - As shorthand, knowledge specified in such a KR is called an “ontology”
 - Yet much of this knowledge may be facts rather than definitions.
 - (This can lead to confusion.)
Some Common Kinds of Ontological Knowledge

• Two common kinds of ontological knowledge are:
 – Formalized vocabulary
 – Schemas, e.g., of databases or object-oriented information models
 – These two kinds overlap, in general

• One basic sub-kind of formalized vocabulary is:
 – A list of categories (“classes”): each a predicate of arity 1
 – A subclass hierarchy among such classes
 – A list of properties (sometimes called “attributes”): each a predicate of arity 2
 – Restrictions on the domain and range of each property
 – (Anti-) reflexivity, symmetry, and/or transitivity of various properties
 – (Non-) disjointness or equivalence of various pairs of classes or properties

• Description Logic: aimed at ontological knowledge
 – The KR basis for OWL and RDF-Schema (which is simpler than OWL)
 – Good for representing: many kinds of formalized vocabularies or schemas;
 some kinds of categorization/classification and configuration tasks
 – Severely limited in important ways
Need for Other Kinds of Ontologies besides OWL

- Forms of ontologies practically/commercially important in the world today*:
 - SQL DB schemas
 - “Conceptual models” in UML and E-R (Entity-Relationship)
 - OO inheritance hierarchies, procedural interfaces, datatype declarations
 - XML Schema
 - OWL is still emerging, wrt deployed usage – dwarfed by all the above
 - RIF – early emerging
 - LP/FOL/BRMS predicate/function signatures
 - Built-ins (e.g., SWRL/RuleML)
 - Equations and conversion-mapping functions
- Overall relationship of OWL to the others is as yet largely unclear
 - There are efforts on some aspects, incl. ODM (bridge to UML).
 - Bright spot is OWL-RL relationship to RIF: formulated as a set of RIF-BLD axioms.
- OWL cannot represent the nonmonotonic aspects of OO inheritance
- OWL does not yet represent, except quite awkwardly:
 - n-ary relations
 - ordering (sequencing) aspects of XML Schema
- (*NB: Omitted here are statistically flavored ontologies that result from inductive learning and/or natural language analysis.)
Declarative Logic Programs (LP) is the Core KR today

- **LP is the core KR of structured knowledge management today**
 - Databases
 - Relational, semi-structured, RDF, XML, object-oriented
 - SQL, SPARQL, XQuery
 - Each fact, query, and view is essentially a rule
 - **Business Rules – the commercially dominant kinds** (see next slide)
 - **Semantic Rules**
 - RuleML standards design, incl. SWRL. The main basis for RIF.
 - W3C Rule Interchange Format (RIF): -BLD, -Core. E.g., Jena tool.
 - **Extension: Rulelog.** E.g., Coherent’s tool.
 - **Semantic Ontologies**
 - W3C RDF(S)
 - W3C OWL-RL (= the Rules subset). E.g., Oracle’s tool for OWL.
 - **Overall:** LP is “the 99%”, classical logic is “the 1%”

- **Relational DB’s were the first successful semantic technology**
 - LP is the KR/logic that was invented to formalize them
- **The Semantic Web today is mainly based on LP KR** … and thus essentially equivalent to semantic rules
 - You might not have realized that!
Commercially Dominant Legacy Kinds of Business Rules

• E.g., in OO applications, workflows

• Production rules (OPS5 heritage): e.g.,

• Event-Condition-Action (ECA) rules (loose family), cf.:
 – business process automation / workflow tools.
 – active databases; publish-subscribe.

• Prolog. “logic programs”: as a full programming language
 – “Logic programming” is different from “declarative logic programs”

• LP is the core KR for production rules, ECA rules, and Prolog
 – … insofar as they are semantic (i.e., “declarative”)
 – But they are each only partially semantic
KR View of Semantic Web related standards

Hazy wrt Standardization: more Framework, incl. about:

– **Uncertainty** (probabilistic, fuzzy); **Provenance** (proof, trust)

Logical Framework standards/designs: RIF-FLD, RuleML

LP (Logic Programs) family
- Umbrella standards/designs
 - RIF-Rulelog
 - RuleML-LP
- Database Query Standards*
 - SQL
 - SPARQL
 - XQuery
- Business Rules Families*
 - Production
 - RIF-PRD
 - ECA (Event-Condition-Action)
 - Prolog

Classical Logic
- Umbrella standards/designs:
 - CL (ISO Common Logic)
 - RuleML-FOL
- Semantic/Web Standards (other)
 - RDF
 - RDFS (Schema)
 - OWL RL (Rule Profile)
 - RIF-BLD (Basic Logic Dialect)
 - (and SWRL)
 - OWL DL (Description Logic)
 - OWL Full
 - SBVR (OMG Semantic Business Vocabulary and Rules)

Via KR mapping to LP, maybe with restrictions
KR View of Semantic Web related standards

Hazy wrt Standardization: more Framework

- **Uncertainty** (probabilistic, fuzzy); **Provenance** (proof, trust)

Logical Framework standards/designs: RIF-FLD, RuleML

<table>
<thead>
<tr>
<th>LP</th>
<th>Classical Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Horn</td>
<td>• Umbrella standards/designs:</td>
</tr>
<tr>
<td></td>
<td>- CL (ISO Common Logic)</td>
</tr>
<tr>
<td></td>
<td>- RuleML-FOL</td>
</tr>
<tr>
<td>• Rest</td>
<td>- Semantic/Web Standards (other)</td>
</tr>
<tr>
<td></td>
<td>- RDF</td>
</tr>
<tr>
<td></td>
<td>- RDFS (Schema)</td>
</tr>
<tr>
<td></td>
<td>- OWL RL (Rule Profile)</td>
</tr>
<tr>
<td></td>
<td>- RIF-BLD (Basic Logic Dialect)</td>
</tr>
<tr>
<td></td>
<td>• (and SWRL)</td>
</tr>
<tr>
<td></td>
<td>- OWL DL (Description Logic)</td>
</tr>
<tr>
<td></td>
<td>- OWL Full</td>
</tr>
<tr>
<td></td>
<td>- SBVR (OMG Semantic Business Vocabulary and Rules)</td>
</tr>
</tbody>
</table>

Via KR mapping to LP (sound, nearly complete)
Classical Logic – Family of KR’s

- Fully general case: Higher-order logic (HOL) – used foundationally in mathematics
 - A predicate or function itself is a term (e.g., a variable, or even a complex term)
 - Its generality makes it very difficult to automate fully
 - As usual:
 - An atom is a predicate applied to an argument tuple of terms
 - A term is a constant, a (logical) variable, or a complex term
 - A complex term is a (logical) function applied to an argument tuple of terms
 - Formulas are formed from atoms by applying:
 - Quantifiers: ∀, ∃
 - Connectives: ¬, ∧, ∨, ↔, ⇒, ⇔

- First-order logic (FOL) – used in computer science much more than is HOL
 - Restriction: each predicate or (logical) function must be a constant
 - Much more amenable to automation than higher-order
 - Used in program verification, planning/scheduling constraint satisfaction

- Description Logic (DL) – used for ontologies in OWL. Actually, a sub-family.
 - Restricts patterns of variable appearances in certain ways
 - First-order. No functions.
Declarative Logic Programs (LP) – Family of KR’s

- Normal LP
 - Rule syntax: \(H \leftarrow B_1 \land \ldots \land B_k \land \text{naf } B_{k+1} \land \ldots \land \text{naf } B_m \). \((m \geq 0)\)
 - \(H \) and \(B_i \)'s are atoms.
 - \(\leftarrow \) is a kind of implication that lacks contraposition.
 - Its lhs and rhs are called the rule’s “head” and “body”, respectively.
 - \(\text{naf} \) (“negation-as-failure”) is a kind of negation that is logically non-monotonic. Intuitively, \(\text{naf } B_i \) means “not believe \(B_i \”).
 - Semantics (well-founded) is defined constructively via an iterated fixed point.
 - It has 3 truth values: \textit{true}; \textit{false} in the naf sense; and an intermediate “\textit{undefined}”, which can represent paradoxicality.

- Rulelog: extends normal LP. Adds several expressive features:
 - Meta knowledge – several aspects
 - Hilog (see next slide). Reification: formula can be treated as a term.
 - Defeasibility: rules can have exceptions, behaving non-monotonically
 - Rule id’s: enables meta-statements about assertions, incl. for provenance
 - Restraint: bounded rationality, using the “undefined” truth value
 - Omniformity: classical-looking formulas can appear in head and body
 - See Ontolog Forum 2013-06-20 session presentation for details.
Important Restrictions (NB: can be combined)

- Each of the restrictions below applies not only to Classical Logic but also to Logic Programs, Rulelog, and many other KR’s

- Hilog – important extension of first-order
 - Syntax is higher-order (a bit restricted)
 - Semantics reduces to first-order, however (via transformation)
 - Used in Common Logic (ISO), and thus
 - Used in Rulelog (draft RuleML/W3C standard)

- First-order
 - Each predicate or (logical) function is a constant

- Horn: every formula is a clause in which at most 1 literal is positive
 - Used in databases (SQL, SPARQL, XQuery), RIF-BLD, RDF(S)
 - Point of departure for normal LP and OWL-RL

- Function-free: no functions
 - Used in databases (SQL, SPARQL, Xquery), RIF-Core, OWL, RDF(S)

- Propositional: arity is zero. This is a further restriction of function-free.
 - Used in constraint satisfaction
Summary of Computational Complexity of KR’s

For task of inferencing, i.e., answering a given query.
- Tractable = time is polynomial in n, worst-case; \(n = |\text{assertions}| \)
- Also: \(m = \# \text{ of atoms} \) \((m \leq n)\). \(v = \max \# \text{ of distinct variables per rule} \).

- FOL propositional: co-NP-complete, i.e., “exponential”
 - Blowup due to “reasoning-by-cases” with disjunctions
- FOL: undecidable
 - Blowup due to recursion thru functions

- Horn LP propositional: \(O(n) \), i.e., linear
- Normal LP propositional: \(O(n \cdot m) \), i.e., quadratic
- Normal LP function-free: polynomial, if \(v \) is a constant (as is typical in practice)
- Horn or Normal LP: undecidable
 - Blowup due to recursion thru functions

- Rulelog: polynomial, if one employs the restraint feature (as is typical in practice)
 - With functions – and other features (hilog, defeasibility, etc.) that extend LP
 - Leverage “undefined” truth value to represent “not bothering”
Relationships/Bridges
Between Classical and LP Families of KR

- **Fundamental Theorem connects Horn LP to Horn FOL**
 - Horn LP entails the same set of ground atoms as Horn FOL
 - (when \(\leftarrow \) is replaced by \(\Leftarrow \))
 - Horn LP is **sound but incomplete** wrt Horn FOL, which has additional non-ground-atom conclusions, notably: non-unit derived clauses; tautologies

- **OWL-RL practical reasoning is thus essentially LP. Ditto RDF(S).**

- **Generalization:** Rulelog is sound but incomplete wrt hilog FOL
 - (Certain restrictions apply)
 - Rulelog lacks “reasoning-by-cases”
 - Essentially it has the power of the unit resolution proof strategy
 - Rulelog reasoning **in presence of conflict is usefully selective** unlike hilog FOL
 - Rulelog has the defeasibility feature, i.e., handles conflict … while retaining a consistent set of conclusions
 - By contrast, classical logic is perfectly brittle: any conflict results in all sentences being concluded (i.e., garbage)
KR View of Semantic Web related standards

*Hazy wrt Standardization: more Framework, incl. about:
– Uncertainty (probabilistic, fuzzy); Provenance (proof, trust)*

Logical Framework standards/designs: RIF-FLD, RuleML

LP (Logic Programs) family
- **Umbrella standards/designs**
 - RIF-Rulelog
 - RuleML-LP
- **Database Query Standards**
 - SQL
 - SPARQL
 - XQuery
- **Business Rules Families**
 - Production
 - RIF-PRD
 - ECA (Event-Condition-Action)
 - Prolog

Classical Logic
- **Umbrella standards/designs:**
 - CL (ISO Common Logic)
 - RuleML-FOL
- **Semantic/Web Standards (other)**
 - RDF
 - RDFS (Schema)
 - OWL RL (Rule Profile)
 - RIF-BLD (Basic Logic Dialect)
 - (and SWRL)
 - OWL DL (Description Logic)
 - OWL Full
 - SBVR (OMG Semantic Business Vocabulary and Rules)

Via KR mapping to LP, maybe with restrictions
KR View of Semantic Web related standards

Hazy wrt Standardization: more Framework

- **Uncertainty** (probabilistic, fuzzy); **Provenance** (proof, trust)

Logical Framework standards/designs: RIF-FLD, RuleML

LP

- Horn
- Rest

Classical Logic

- **Umbrella standards/designs:**
 - CL (ISO Common Logic)
 - RuleML-FOL

- **Semantic/Web Standards (other)**
 - RDF
 - RDFS (Schema)
 - OWL RL (Rule Profile)
 - RIF-BLD (Basic Logic Dialect)
 - (and SWRL)
 - OWL DL (Description Logic)
 - OWL Full
 - SBVR (OMG Semantic Business Vocabulary and Rules)

Via KR mapping to LP (sound, nearly complete)
See the ff. longer AAAI-13 Rules tutorial, available at http://coherentknowledge.com/publications:

This is the latest iteration of a tutorial that since 2004 has been presented at numerous scientific conferences on web, semantic web, and AI.

A book is in early stages of preparation based on this tutorial.
Acknowledgements

- Thanks to Michael Kifer and Mike Dean, co-authors of longer tutorial presentations upon which this presentation was based.
Thank You

Disclaimer: The preceding slides represent the views of the author(s) only. All brands, logos and products are trademarks or registered trademarks of their respective companies and organizations.
Venn Diagram: Expressive Overlaps among KRs

NB: Nonmon LP, including Courteous, relies on Default Negation as fundamental underlying KR expressive mechanism for nonmonotonicity.

Description Logic

Logic Programs

Horn Logic Programs

First-Order Logic

Description Logic Programs

(Nonmonotonicity)

(Procedural Attachments)
The “Spirit” of LP

The following summarizes the “spirit” of how LP differs from FOL:

- **“Avoid Disjunction”**
 - Avoid disjunctions of positive literals as expressions
 - In premises, intermediate conclusions, final conclusions
 - \((\text{conclude } (A \lor B)) \text{ only if } ((\text{conclude } A) \lor (\text{conclude } B))\)
 - Permitting such disjunctions creates exponential blowup
 - In propositional FOL: 3-SAT is NP-hard
 - In the leading proposed approaches that expressively add disjunction to LP with negation, e.g., propositional Answer Set Programs
 - No “reasoning by cases”, therefore

- **“Stay Grounded”**
 - Avoid (irreducibly) non-ground conclusions

LP, unlike FOL, is straightforwardly extensible, therefore, to:

- Nonmonotonicity – defaults, incl. NAF
- Procedural attachments, esp. external actions
Examples – *slide TODO ideally*

- Higher-Order not First-Order
- First-Order Non-Horn
- Horn First-Order

- For now, see the AAAI-13 rules tutorial