
A Guide to ERGOAI Packages

Version 2.0 (Myia)

Edited by

Michael Kifer

Coherent Knowledge

October 2018

Portions Copyright c© 2013–2018 Coherent Knowledge

Contents

1 JAVA-to-ERGO Interfaces 1

1.1 The Low-level Interface . 1

1.2 Debugging ERGO Statements Used in a Java Program 6

1.2.1 Logging . 6

1.2.2 Catching Exceptions, Checking Errors and Warnings 7

1.3 The High-Level Interface (experimental) . 8

1.4 Executing Java Application Programs that Call ERGO 15

1.5 How Do Applications Find the Knowledge Base? 17

1.6 Summary of the Variables and Properties Used by the Interface 18

1.7 Building the Prepackaged Examples . 18

2 ERGO-to-Java Interface 20

2.1 General . 20

2.2 Dialog Boxes . 21

2.3 Windows . 21

2.4 Printing to a Window . 22

2.5 Scripting Java Applications . 22

3 Python-to-ERGO Interface 25

3.1 Introduction . 25

3.2 Connecting to ERGO . 26

3.3 Talking to ERGO . 27

3.4 Talking to XSB . 29

3.5 Unpacking the Results . 29

3.5.1 Unpacking Results from pyergo query() 30

3.5.2 Unpacking Results from pyxsb query() 31

i

CONTENTS

4 HTTP and Web Services 32

4.1 General . 32

4.2 The HTTP API . 32

4.3 Miscellaneous . 34

5 Querying SQL Databases 36

5.1 Connecting to a Database . 36

5.2 Queries . 37

6 Querying SPARQL Endpoints 40

6.1 General . 40

6.2 Queries and Updates . 41

6.3 Creating Your Own Triple Store . 44

6.3.1 GraphDB . 44

6.3.2 Jena TDB . 45

7 Loading RDF and OWL files 47

7.1 Loading RDF and OWL Files . 47

7.2 Other API Calls . 48

7.3 Importing Multiple RDF/OWL Files . 49

8 Evidential Probabilistic Reasoning in ERGO 50

9 Importing Tabular Data (DSV, TSV, etc.) 53

9.1 API for Loading and Saving Tabular Data . 53

9.2 Loading Multiple Spreadsheets into the Same Module 58

9.3 Accessing Tabular Data via Frames . 58

9.3.1 Accessing via Frames and Meta Data 60

10 Importing JSON Structures 61

10.1 Introduction . 61

10.2 API for Importing JSON as Terms . 62

10.3 API for Importing JSON as Facts . 65

10.4 Exporting to JSON . 67

10.4.1 Exporting HiLog Terms to JSON . 67

10.4.2 Exporting ERGO Objects to JSON . 68

Portions Copyright c© 2013–2018 Coherent Knowledge ii

CONTENTS

11 Persistent Modules 73

11.1 PM Interface . 73

11.2 Examples . 75

12 SGML and XML Parser for ERGO 77

12.1 Introduction . 77

12.2 Import Modes for XML in Ergo . 78

12.2.1 White Space Handling . 78

12.2.2 Requesting Navigation Links . 79

12.3 Mapping XML to ERGO Objects . 80

12.3.1 Invention of Object Ids for XML Elements 80

12.3.2 Text and Mixed Element Content . 81

12.3.3 Translation of XML Attributes . 82

12.3.4 Ordering . 83

12.3.5 Additional Attributes and Methods in the navlinks Mode 83

12.4 Inspection Predicates . 85

12.5 XPath Support . 86

12.6 Low-level Predicates . 86

Portions Copyright c© 2013–2018 Coherent Knowledge iii

Chapter 1

JAVA-to-ERGO Interfaces
by Aditi Pandit and Michael Kifer

This chapter documents the API for accessing ERGO from Java programs. The API has
two versions: a low-level API (used most commonly), which enables Java programs to send
arbitrary queries to ERGO and get results, and an experimental high-level API, which is more
limited and requires some setup, but can simplify a number of tasks in interfacing the two
systems. The high-level API establishes a correspondence between Java classes and ERGO

classes, which enables manipulation of ERGO classes by executing appropriate methods on the
corresponding Java classes. Both interfaces rely on the Java-XSB interface, called Interprolog
[1], developed by Interprolog.com.

The API assumes that a Java program is started first and then it invokes XSB/ERGO as
a subprocess. The XSB/ERGO side is passive: it only responds to the queries sent by the
Java side. Queries can be anything that is accepted at the ERGO shell prompt: queries,
insert/delete commands, control switches, etc., are all fine. One thing to remember is that the
backslash is used in Java as an escape symbol and in ERGO as a prefix of the builtin operators
and commands. Therefore, each backslash must be escaped with another backslash. That is,
instead of a query like ”p(?X) \and q(?X).” the API requires ”p(?X) \\and q(?X).”.

The FloraObject object. While reading this document one will notice that the class
FloraObject is used in many cases. This class consists of Java objects that encapsulate
ERGO objects. These Java objects are mostly used internally. From the end user’s point of
view, the only method of interest in this class is toString().

1.1 The Low-level Interface

The low-level API enables Java programs to send arbitrary queries to ERGO and get results.
It is assumed that the following two Java properties are set either as part of the java command
(e.g., java ... -DPROLOGDIR=some-dir ...) or inside the Java application itself, e.g.,

System.setProperty("PROLOGDIR","C:\\JSmith\\XSB\\config\\x64-pc-windows\\bin");

1

Interprolog.com

CHAPTER 1. JAVA-TO-ERGO INTERFACES

Please remember that Windows uses backslash as a file separator, and inside a Java program
these backslashes must be doubled, as shown above.

The two aforementioned properties are:

PROLOGDIR: This variable points to the folder containing the XSB executable (binary, not the
command script).
To get the right value for your installation, start ERGO and execute this at the prompt:

system{bindir = ?D}.

The result will be returned in the variable ?D.

FLORADIR: This variable must point to the folder containing the ERGO installation.
To get the right value for your installation, start ERGO and execute this at the prompt:

system{installdir = ?D}.

Again, the result will be returned in the variable ?D.

In order to be able to access ERGO, the Java program must first establish a session for a run-
ning instance of ERGO. Multiple sessions can be active at the same time. The knowledge bases
in the different running instances are completely independent. Sessions are instances of the
class net.sf.flora2.API.FloraSession. This class provides methods for opening/closing
sessions and loading ERGO knowledge bases (which are also used in the high-level interface).
In addition, a session provides methods for executing arbitrary ERGO queries. The follow-
ing is the complete list of the methods that are available in that class. All these are public
instance methods and the word “public” is therefore omitted.

• FloraSession()

This constructor creates a connection to an instance of ERGO. Use it like this:

FloraSession session = new FloraSession();

All the methods below are executed on FloraSession-objects produced in this way.

• close()

This method must be called to terminate a ERGO session. Note that this does not
terminate the Java program that initiated the session: to exit the Java program that
talks to ERGO, one needs to execute the statement

System.exit();

Note that just returning from the main method is not enough.

Portions Copyright c© 2013–2018 Coherent Knowledge 2

CHAPTER 1. JAVA-TO-ERGO INTERFACES

• Iterator<FloraObject> executeQuery(String query)

This method executes the ERGO query given by the parameter query. The query must
be terminated with a period, exactly as it would be typed in the ERGO shell. It is used to
execute ERGO queries that do not require variable bindings to be returned back to Java
or queries that have only a single variable to be returned. Each binding is represented
as an instance of the class net.sf.flora2.API.FloraSession. The examples below
illustrate how to process the results returned by this method.

• Iterator<HashMap<String,FloraObject>> executeQuery(String query,Vector vars)

This method executes the ERGO query given by the first argument. The query must
be terminated with a period, as if it were typed in the ERGO shell. The Vector vars
(of strings) specifies the names of all the variables in the query for which bindings need
to be returned. These variables are added to the vector using the method add before
calling executeQuery. For instance, vars.add("?X").

This version of executeQuery returns an iterator over all bindings returned by the ERGO

query. Each binding is represented by a HashMap<String,FloraObject> object which
can be used to obtain the value of each variable in the query (using the get() method).
The value of each variable returned is an instance of net.sf.flora2.API.FloraObject.

The examples below show how to handle the results returned by this method.

• boolean executeCommand(String command)

This is a simplified way of executing ERGO queries that do not need to return any
results, i.e., when the user wants to know if the query is true or false for some bindings
of command’s arguments (if there are any), but not the actual bindings. There are also
differences (compared to executeQuery()) in the way this command handles exceptions,
as explained in the next section. As before, the command must be terminated with a
period.

• boolean loadFile(String fileName,String moduleName)

This method loads the ERGO program, specified by the parameter fileName into the
ERGO module specified in moduleName. If errors occur during loading, loadFile()
returns false.

• boolean compileFile(String fileName,String moduleName)

This method compiles (but does not load) the ERGO program, specified by the param-
eter fileName for the ERGO module specified in moduleName. If errors occur during
compilation, compileFile() returns false.

• boolean addFile(String fileName,String moduleName)

This method adds the ERGO program, specified by the parameter fileName to an exist-
ing ERGO module specified in moduleName. If errors occur during addition, addFile()
returns false.

• boolean compileaddFile(String fileName,String moduleName)

This method compiles the ERGO program, specified by the parameter fileName for ad-
dition to the ERGO module specified in moduleName. If errors occur during compilation,
compileaddFile() returns false.

Portions Copyright c© 2013–2018 Coherent Knowledge 3

CHAPTER 1. JAVA-TO-ERGO INTERFACES

The code snippet below illustrates the low-level API.

Step 1: Writing ERGO programs to be called by Java. Let us assume that we have a
file, called flogic basics.flr, which contains the following information:

person :: object.

dangerous_hobby :: object.

john:employee.

employee::person.

bob:person.

tim:person.

betty:employee.

person[|age=>integer,

kids=>person,

salary(year)=>value,

hobbies=>hobby,

believes_in=>something,

instances => person

|].

mary:employee[

age->29,

kids -> {tim,leo,betty},

salary(1998) -> a_lot

].

tim[hobbies -> {stamps, snowboard}].

betty[hobbies->{fishing,diving}].

snowboard:dangerous_hobby.

diving:dangerous_hobby.

?_X[self-> ?_X].

person[|believes_in -> {something, something_else}|].

Step 2: Writing a JAVA application to interface with ERGO. The following code
loads a ERGO program from a file and then passes queries to the knowledge base.

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class flogicbasicsExample {

Portions Copyright c© 2013–2018 Coherent Knowledge 4

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public static void main(String[] args) {

// create a new session for a running instance of the engine

FloraSession session = new FloraSession();

System.out.println("Engine session started");

// Assume that Java was called with -DINPUT_FILE=the-file-name

String fileName = System.getProperty("INPUT_FILE");

if(fileName == null || fileName.trim().length() == 0) {

System.out.println("Invalid path to example file!");

System.exit(0);

}

// load the program into module basic_mod

if (session.loadFile(fileName,"basic_mod"))

System.out.println("Example loaded successfully!");

else

System.out.println("Error loading the example!");

/* Running queries from flogic_basics.flr */

/* Query for persons */

String command = "?X:person@basic_mod.";

System.out.println("Query:"+command);

Iterator<FloraObject> personObjs = session.executeQuery(command);

/* Printing out the person names and information about their kids */

while (personObjs.hasNext()) {

FloraObject personObj = personObjs.next();

System.out.println("Person name:"+personObj);

}

command = "person[instances -> ?X]@basic_mod.";

System.out.println("Query:"+command);

personObjs = session.executeQuery(command);

/* Printing out the person names */

while (personObjs.hasNext()) {

Object personObj = personObjs.next();

System.out.println("Person Id: "+personObj);

}

/* Example of executeQuery with two arguments */

Vector<String> vars = new Vector<String>();

vars.add("?X");

vars.add("?Y");

Portions Copyright c© 2013–2018 Coherent Knowledge 5

CHAPTER 1. JAVA-TO-ERGO INTERFACES

Iterator<HashMap<String,FloraObject>> allmatches =

session.executeQuery("?X[believes_in -> ?Y]@basic_mod.",vars);

System.out.println("Query:?X[believes_in -> ?Y]@basic_mod.");

while(allmatches.hasNext()) {

HashMap<String,FloraObject> firstmatch = allmatches.next();

Object Xobj = firstmatch.get("?X");

Object Yobj = firstmatch.get("?Y");

System.out.println(Xobj+" believes in: "+?Yobj);

}

// quit the system

session.close();

System.exit(0);

}

}

For the information on how to invoke the above Java class in the context of the Java-ERGO

API, please see Section 1.4.

1.2 Debugging ERGO Statements Used in a Java Program

1.2.1 Logging

It often happens that an ERGO query or a file used from within a Java Program has an error
and executeQuery() returns an error message saying that there is a “problem” with a ERGO

statement. The Java part does not know what the problem is but it can be told to show the
output of the ERGO statements on the console. This can be done by executing the statement

FloraSession.showOutput();

This will stream all warnings, errors, and just normal output from ERGO to the console.
When no longer needed, this mode can be turned off like this:

FloraSession.hideOutput();

The FloraSession.showOutput(); statement can be executed at any point in the program,
but preferably after calling FloraSession(), to avoid irrelevant output.

Here is an example of what you might see:

My command 2 has succeeded

yes

Loading file test.ergo:

yes

Portions Copyright c© 2013–2018 Coherent Knowledge 6

CHAPTER 1. JAVA-TO-ERGO INTERFACES

++Error[Ergo]> [test.ergo] <Composer> near line(2)/char(3) ‘b’ unexpected operand:

’,’, ’.’, or some other operator may be missing just before the indicated location

++1 error

++compilation aborted

Here the output from ERGO starts with normal output from, say, writeln(...)@\io com-
mands and ends with a compilation error encountered while compiling the file test.ergo.
(The above is output from ERGO; in Flora-2 it will be similar.)

Two other useful calls are

FloraSession.enableLogging();

FloraSession.disableLogging();

Executing FloraSession.enableLogging(); will cause the Java API to record all major
events such as starting a session, ending it, loading or adding a ERGO file, and execution of
every query. It does not report query answers, however. Logging can be enabled or disabled
anywhere in the program, but, of course, the log messages will start to appear only after the
enabling command is executed and will cease to appear after disableLogging() is executed.

1.2.2 Catching Exceptions, Checking Errors and Warnings

Logging allows one to find errors and warnings in an ERGO subprocess of a Java program by
checking the output produced by the session. However, often one needs to be able to do this
programmatically and this can be done as follows.

Exceptions. First, if a running ERGO query invoked via executeQuery() issues a run-time
error, a Java FlrException is thrown, and this can be caught by the parent Java program.
An exception is also thrown if the query passed to executeQuery() has a syntax error.1

Note that ERGO statements invoked via the other methods (executeCommand(), loadFile(),
etc.) do not throw exceptions and errors that occur during the execution of those statements
can be detected only through the mechanism of hasErrors() described below. However,
executeCommand(), loadFile(), addFile(), etc., may throw exceptions for other reasons,
such as a wrong module in loadFule(), etc.

Detecting syntax errors and warnings. Errors and warnings produced by the ERGO

compiler do not result in exceptions, so they cannot be caught via Java’s try-catch mechanism.
To detect if a previous executeQuery(), executeCommand(), loadFile(), or similar API
command produced a warning or an error, use the following public instance methods in class
FloraSession:

1 If the query statement itself has no syntax error but it loads a file that has a syntax error then no exception
is thrown. Read on to see how to identify this situation programmatically.

Portions Copyright c© 2013–2018 Coherent Knowledge 7

CHAPTER 1. JAVA-TO-ERGO INTERFACES

• boolean hasErrors() — executing session.hasErrors(), where session is a variable
holding a FloraSession object created earlier, will tell if a previous executeQuery()
or other such command (executed on the same FloraSession object) has produced an
error. This also includes runtime errors, like FlrException’s.

• boolean hasWarnings() — executing session.hasWarnings(), where session is a
variable holding a FloraSession object, will tell if a previous executeQuery() or other
such command (executed on the same FloraSession object) has produced a warning.

1.3 The High-Level Interface (experimental)

The high-level API operates by creating proxy Java classes for ERGO classes selected by the
user. This enables the Java program to operate on ERGO classes by executing appropriate
methods on the corresponding proxy Java classes. However, compared to the low-level inter-
face, the high-level one is somewhat limited. Both interfaces can be used at the same time, if
desired.

Note A: Most users appear to opt for the low-level interface and such readers can skip this
section.

Note B: This interface will not work for ERGO programs that use non-alphanumeric
names for methods and predicates. For instance, if a program involves statements like
foo[’bar$#123’->456] then the interface might generate syntactically incorrect Java proxy
classes and errors will be issued during the compilation.

The use of the high-level API involves a number of steps, as described below.

Stage 1: Writing ERGO programs to use with the high-level interface. We assume
the same flogic basics.flr file as in the previous example.

Stage 2: Generating Java classes that serve as proxies for ERGO classes. The
ERGO side of the Java-to-ERGO high level API provides a predicate to generate Java proxy
classes for each F-logic class which have a signature declaration in the ERGO knowledge base.
A proxy class gets defined so that it would have methods to manipulate the attributes and
methods of the corresponding F-logic class for which signature declarations are available. If
an F-logic class has a declared value-returning attribute foobar then the proxy class will
have the following methods. Each method name has the form actionS1S2S3 foobar, where
action is either get, set, or delete. The specifier S1 indicates the type of the method —
V for value-returning, B for Boolean, and P for procedural. The specifier S2 tells whether
the operation applies to the signature of the method (S), e.g., person[foobar=>string], or
to the actual data (D), for example, john[foobar->3]. Finally, the specifier S3 tells if the
operation applies to the inheritable variant of the method (I) or its non-inheritable variant
(N).

1. public Iterator<FloraObject> getVDI foobar()

public Iterator<FloraObject> getVDN foobar()

Portions Copyright c© 2013–2018 Coherent Knowledge 8

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public Iterator<FloraObject> getVSI foobar()

public Iterator<FloraObject> getVSN foobar()

The above methods query the knowledge base and get all answers for the attribute
foobar. They return iterators through which these answers can be processed one-by-
one. Each object returned by the iterator is of type FloraObject. The getVDN form
queries non-inheritable data methods and getVDI the inheritable ones. The getVSI and
getVSN forms query the signatures of the attribute foobar.

2. public boolean setVDI foobar(Vector value)

public boolean setVDN foobar(Vector value)

public boolean setVSI foobar(Vector value)

public boolean setVSN foobar(Vector value)

These methods add values to the set of values returned by the attribute foobar. The
values must be placed in the vector parameter passed these methods. Again, setVDN
adds data for non-inheritable methods and setVDI is used for inheritable methods.
setVSI and setVSN add types to signatures.

3. public boolean setVDI foobar(Object value)

public boolean setVDN foobar(Object value)

public boolean setVSI foobar(Object value)

public boolean setVSN foobar(Object value)

These methods provide a simplified interface when only one value needs to be added. It
works like the earlier set * methods, except that only one value given as an argument
is added.

4. public boolean deleteVDI foobar(Vector value)

public boolean deleteVDN foobar(Vector value)

public boolean deleteVSI foobar(Vector value)

public boolean deleteVSN foobar(Vector value)

Delete a set of values of the attribute foobar. The set is specified in the vector argument.

5. public boolean deleteVDI foobar(Object value)

public boolean deleteVDN foobar(Object value)

public boolean deleteVSI foobar(Object value)

public boolean deleteVSN foobar(Object value)

A simplified interface for the case when only one value needs to be deleted.

6. public boolean deleteVDI foobar()

public boolean deleteVDN foobar()

public boolean deleteVSI foobar()

public boolean deleteVSN foobar()

Delete all values for the attribute foobar.

For F-logic methods with arguments, the high-level API provides Java methods as above,
but they take more arguments to accommodate the parameters that F-logic methods take.
Let us assume that the F-logic method is called foobar2 and it takes parameters arg1 and
arg2. As before the getVDI *, setVDI *, etc., forms of the Java methods are for dealing
with inheritable ERGO methods and the getVDN *, setVDN *, etc., forms are for dealing with
non-inheritable ERGO methods.

Portions Copyright c© 2013–2018 Coherent Knowledge 9

CHAPTER 1. JAVA-TO-ERGO INTERFACES

1. public Iterator<FloraObject> getVDI foobar2(Object arg1, Object arg2)

public Iterator<FloraObject> getVDN foobar2(Object arg1, Object arg2)

Obtain all values for the F-logic method invocation foobar2(arg1,arg2).

2. public boolean setVDI foobar2(Object arg1, Object arg2, Vector value)

public boolean setVDN foobar2(Object arg1, Object arg2, Vector value)

Add a set of methods specified in the parameter value for the method invocation
foobar2(arg1,arg2).

3. public boolean setVDI foobar2(Object arg1, Object arg2, Object value)

public boolean setVDN foobar2(Object arg1, Object arg2, Object value)

A simplified interface when only one value is to be added.

4. public boolean deleteVDI foobar2(Object arg1, Object arg2, Vector value)

public boolean deleteVDN foobar2(Object arg1, Object arg2, Vector value)

Delete a set of values from foobar2(arg1,arg2). The set is given by the vector pa-
rameter value.

5. public boolean deleteVDI foobar2(Object arg1, Object arg2, Object value)

public boolean deleteVDN foobar2(Object arg1, Object arg2, Object value)

A simplified interface for deleting a single value.

6. public boolean deleteVDI foobar2(Object arg1, Object arg2)

public boolean deleteVDN foobar2(Object arg1, Object arg2)

Delete all values for the method invocation foobar2(arg1,arg2).

For Boolean and procedural methods, the generated methods are similar except that there
is only one version for the set and delete methods. In addition, Boolean inheritable methods
use the getBDI *, setBDI *, etc., form, while non-inheritable methods use the getBDN *, etc.,
form. Procedural methods use the getPDI *, getPDN *, etc., forms. For instance,

1. public boolean getBDI foobar3()

public boolean getBDN foobar3()

public boolean getPDI foobar3()

public boolean getPDN foobar3()

2. public boolean setBDI foobar3()

public boolean setBDN foobar3()

public boolean setPDI foobar3()

public boolean setPDN foobar3()

3. public boolean deleteBDI foobar3()

public boolean deleteBDN foobar3()

public boolean deletePDI foobar3()

public boolean deletePDN foobar3()

In addition, the methods to query the ISA hierarchy are available:

• public Iterator<FloraObject> getDirectInstances()

Portions Copyright c© 2013–2018 Coherent Knowledge 10

CHAPTER 1. JAVA-TO-ERGO INTERFACES

• public Iterator<FloraObject> getInstances()

• public Iterator<FloraObject> getDirectSubClasses()

• public Iterator<FloraObject> getSubClasses()

• public Iterator<FloraObject> getSuperClasses()

• public Iterator<FloraObject> getDirectSuperClasses()

These methods apply to the java proxy object that corresponds to the F-logic class person.

All these methods are generated automatically by executing the following ERGO query (de-
fined in the javaAPI package in ERGO). All arguments in the query must be bound:

// write(?Class,?Module,?ProxyClassFileName).

?- write(foo,example,’myproject/foo.java’).

The first argument specifies the class for which to generate the methods, the file name tells
where to put the Java file for the proxy object, and the model argument tells which ERGO

model to load this program to. The result of this execution will be the file foo.java which
should be included with your java program (the program that is going to interface with ERGO).
Note that because of the Java conventions, the file name must have the same name as the
class name. It is important to remember, however, that proxy methods will be generated only
for those F-logic methods that have been declared using signatures.

Let us now come back to our program flogic basics.flr for which we want to use the high-
level API. Suppose we want to query the person class. To generate the proxy declarations for
that class, we create the file person.java for the module basic mod as follows.

?- load{’examples/flogic_basics’>>basic_mod}.

?- load{javaAPI}.

?- write(person,basic_mod,’examples/person.java’)@\prolog

The write method will create the file person.java shown below. The methods defined in
person.java are the class constructors for person, the methods to query the ISA hierarchy,
and the “get”, “set” and “delete” methods for each method and attribute declared in the
ERGO class person. The parameters for the “get”, “set” and “delete” Java methods are the
same as for the corresponding ERGO methods. The first constructor for class person takes
a low-level object of class net.sf.flora2.API.FloraObject as a parameter. The second
parameter is the ERGO module for which the proxy object is to be created. The second
person-constructor takes F-logic object Id instead of a low-level FloraObject. It also takes
the module name, as before, but, in addition, it takes a session for a running ERGO instance.
The session parameter was not needed for the first person-constructor because FloraObject
is already attached to a concrete session.

It can be seen from the form of the proxy object constructors that proxy objects are attached
to specific ERGO modules, which may seem to go against the general philosophy that F-logic
objects do not belong to any module — only their methods do. On closer examination,
however, attaching high-level proxy Java objects to modules makes perfect sense. Indeed, a

Portions Copyright c© 2013–2018 Coherent Knowledge 11

CHAPTER 1. JAVA-TO-ERGO INTERFACES

proxy object encapsulates operations for manipulating F-logic attributes and methods, which
belong to concrete ERGO modules, so the proxy object needs to know which module it operates
upon.

person.java file

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class person {

public FloraObject sourceFloraObject;

// proxy objects’ constructors

public person(FloraObject sourceFloraObject, String moduleName){ ... }

public person(String floraOID,String moduleName, FloraSession session){...}

// ISA hierarchy queries

public Iterator<FloraObject> getDirectInstances() { ... }

public Iterator<FloraObject> getInstances() { ... }

public Iterator<FloraObject> getDirectSubClasses() { ... }

public Iterator<FloraObject> getSubClasses() { ... }

public Iterator<FloraObject> getDirectSuperClasses() { ... }

public Iterator<FloraObject> getSuperClasses() { ... }

// Java methods for manipulating methods

public boolean setVDI_age(Object value) { ... }

public boolean setVDN_age(Object value) { ... }

public Iterator<FloraObject> getVDI_age(){ ... }

public Iterator<FloraObject> getVDN_age(){ ... }

public boolean deleteVDI_age(Object value) { ... }

public boolean deleteVDN_age(Object value) { ... }

public boolean deleteVDI_age() { ... }

public boolean deleteVDN_age() { ... }

public boolean setVDI_salary(Object year,Object value) { ... }

public boolean setVDN_salary(Object year,Object value) { ... }

public Iterator<FloraObject> getVDI_salary(Object year) { ... }

public Iterator<FloraObject> getVDN_salary(Object year) { ... }

public boolean deleteVDI_salary(Object year,Object value) { ... }

public boolean deleteVDN_salary(Object year,Object value) { ... }

public boolean deleteVDI_salary(Object year) { ... }

public boolean deleteVDN_salary(Object year) { ... }

public boolean setVDI_hobbies(Vector value) { ... }

public boolean setVDN_hobbies(Vector value) { ... }

public Iterator<FloraObject> getVDI_hobbies(){ ... }

public Iterator<FloraObject> getVDN_hobbies(){ ... }

Portions Copyright c© 2013–2018 Coherent Knowledge 12

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public boolean deleteVDI_hobbies(Vector value) { ... }

public boolean deleteVDN_hobbies(Vector value) { ... }

public boolean deleteVDI_hobbies(){ ... }

public boolean deleteVDN_hobbies(){ ... }

public boolean setVDI_instances(Vector value) { ... }

public boolean setVDN_instances(Vector value) { ... }

public Iterator<FloraObject> getVDI_instances(){ ... }

public Iterator<FloraObject> getVDN_instances(){ ... }

public boolean deleteVDI_instances(Vector value) { ... }

public boolean deleteVDN_instances(Vector value) { ... }

public boolean deleteVDI_instances(){ ... }

public boolean deleteVDN_instances(){ ... }

public boolean setVDI_kids(Vector value) { ... }

public boolean setVDN_kids(Vector value) { ... }

public Iterator<FloraObject> getVDI_kids(){ ... }

public Iterator<FloraObject> getVDN_kids(){ ... }

public boolean deleteVDI_kids(Vector value) { ... }

public boolean deleteVDN_kids(Vector value) { ... }

public boolean deleteVDI_kids(){ ... }

public boolean deleteVDN_kids(){ ... }

public boolean setVDI_believes_in(Vector value) { ... }

public boolean setVDN_believes_in(Vector value) { ... }

public Iterator<FloraObject> getVDI_believes_in(){ ... }

public Iterator<FloraObject> getVDN_believes_in(){ ... }

public boolean deleteVDI_believes_in(Vector value) { ... }

public boolean deleteVDN_believes_in(Vector value) { ... }

public boolean deleteVDI_believes_in(){ ... }

public boolean deleteVDN_believes_in(){ ... }

}

Stage 3: Writing Java applications that use the high-level API. The following
program (flogicbasicsExample.java) shows several queries that use the high-level interface.
The class person.java is generated at the previous stage. The methods of the high-level
interface operate on Java objects that are proxies for ERGO objects. These Java objects
are members of the class net.sf.flora2.API.FloraObject. Therefore, before one can use
the high-level methods one need to first retrieve the appropriate proxy objects on which to
operate. This is done by sending an appropriate query through the method executeQuery—
the same method that was used in the low-level interface. Alternatively, person-objects could
be constructed using the 3-argument proxy constructor, which takes F-logic oids.

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class flogicbasicsExample {

Portions Copyright c© 2013–2018 Coherent Knowledge 13

CHAPTER 1. JAVA-TO-ERGO INTERFACES

public static void main(String[] args) {

/* Initializing the session */

FloraSession session = new FloraSession();

System.out.println("Flora session started");

String fileName = "examples/flogic_basics"; // must be a valid path

/* Loading the flora file */

if (session.loadFile(fileName,"basic_mod"))

System.out.println("Example loaded successfully!");

else

System.out.println("Error loading the example!");

// Retrieving instances of the class person through low-level API

String command = "?X:person@basic_mod.";

System.out.println("Query:"+command);

Iterator<FloraObject> personObjs = session.executeQuery(command);

/* Print out person names and information about their kids */

person currPerson = null;

while (personObjs.hasNext()) {

FloraObject personObj = personObjs.next();

// Elevate personObj to the higher-level person-object

currPerson =new person(personObj,"basic_mod");

/* Set that person’s age to 50 */

currPerson.setVDN_age("50");

/* Get this person’s kids */

Iterator<FloraObject> kidsItr = currPerson.getVDN_kids();

while (kidsItr.hasNext()) {

FloraObject kidObj = kidsItr.next();

System.out.println("Person: " + personObj + " has kid: " +kidObj);

person kidPerson = null;

// Elevate kidObj to kidPerson

kidPerson = new person(kidObj,"basic_mod");

/* Get kidPerson’s hobbies */

Iterator<FloraObject> hobbiesItr = kidPerson.getVDN_hobbies();

while(hobbiesItr.hasNext()) {

FloraObject hobbyObj = hobbiesItr.next();

System.out.println("Kid:"+kidObj + " has hobby:" +hobbyObj);

}

}

}

FloraObject age;

Portions Copyright c© 2013–2018 Coherent Knowledge 14

CHAPTER 1. JAVA-TO-ERGO INTERFACES

// create a person-object directly by supplying its F-logic OID

// father(mary)

currPerson = new person("father(mary)", "example", session);

Iterator<FloraObject> maryfatherItr = currPerson.getVDN_age();

age = maryfatherItr.next();

System.out.println("Mary’s father is " + age + " years old");

// create a proxy object for the F-logic class person itself

person personClass = new person("person", "example", session);

// query its instances through the high-level interface

Iterator<FloraObject> instanceIter = personClass.getInstances();

System.out.println("Person instances using high-level API:");

while (instanceIter.hasNext())

System.out.println(" " + instanceIter.next());

session.close();

System.exit();

}

}

1.4 Executing Java Application Programs that Call ERGO

To compile and run Java programs that interface with ERGO, follow the following guidelines.

• Compilation: Place the files flogicsbasicsExample.java (the program you have writ-
ten) and person.java (the automatically generated file) in the same directory and com-
pile them using the javac command. Add the jar-files containing the API code and
interprolog.jar to the classpath using the -classpath parameter (the first line is for
Windows and the second for Mac and Linux):

-classpath "%FLORADIR%\java\flora2java.jar";"%FLORADIR%\java\interprolog.jar"

-classpath "$FLORADIR/java/flora2java.jar":"$FLORADIR/java/interprolog.jar"

FLORADIR here is a shell (cmd, in Windows) variable that can be set by the scripts
flora settings.sh (Linux/Mac) or flora settings.bat (Windows). In sum, the
Java compilation command should look as below, where JAVA BIN is a shell/cmd variable
that points to the directory containing the Java compiler command (again, the first
command below is for Windows and the second for Linux/Mac):

%JAVA_BIN%\javac -classpath

"%FLORADIR%\java\flora2java.jar";"%FLORADIR%\java\interprolog.jar"

$JAVA_BIN/javac -classpath

"$FLORADIR/java/flora2java.jar":"$FLORADIR/java/interprolog.jar"

Note: the above commands should each be on one line.

Portions Copyright c© 2013–2018 Coherent Knowledge 15

CHAPTER 1. JAVA-TO-ERGO INTERFACES

• Running : Generally, Java programs that call ERGO should be invoked using the follow-
ing command. For Linux and Mac, change %VAR% to $VAR:

%JAVA_BIN%\java -DPROLOGDIR=%PROLOGDIR%

-DFLORADIR=%FLORADIR%

-Djava.library.path=%PROLOGDIR% <--- optional

-classpath %MYCLASSPATH% flogicbasicsExample

The above commands use several shell/cmd variables that are explained below. Instead
of using the variables, one can substitute their values directly—read on.

– JAVA BIN: This variable should point to the directory containing the java

and javac executables of the JDK. It can be set by executing the scripts
Ergo\java\windowsVariables.bat or Ergo/java/unixVariables.sh, depending
on your OS.

Of course, if the javac and java commands can be found through the PATH envi-
ronment variable then one can simply type javac and java instead of the above.

– PROLOGDIR: This variable should point to the directory containing the
XSB executable, which can be accomplished by executing the scripts
Ergo\java\flora settings.bat (Windows) or Ergo/java/flora settings.sh

(Linux/Mac).
Alternatively, one can get the correct value of %PROLOGDIR% (or $PROLOGDIR) and
use it directly in the -DPROLOGDIR=... option by starting ERGO and executing
this query at the prompt:

system{bindir = ?D}.

The result will be returned in the variable ?D.

– FLORADIR: This variable should be set to the directory containing the ERGO system,
which can be done by executing the aforesaid scripts flora settings.bat and
flora settings.sh.
Alternatively, one can get the correct value of %FLORADIR% (or $FLORADIR) and use
it directly in the -DFLORADIR=... option by starting ERGO and executing this
query at the prompt:

system{installdir = ?D}.

Again, the result will be returned in the variable ?D.

– MYCLASSPATH: This variable should include the correct paths to the jar files
containing the API code, i.e., flora2java.jar and file interprolog.jar, plus
the directory where the main application class (like flogicbasicsExample

in our example) is found. Normally, one sets MYCLASSPATH to
%CLASSPATH%;%FLORADIR%\java\flora2java.jar;%FLORADIR%\java\interprolog.jar;

DirOfTheExample, where DirOfTheExample is the directory where the main ap-
plication class resides. In our example, this directory is simply . (the current
directory). For Linux and Mac, use ’:’ instead of ’;’ as a separator, forward slashes
instead of backward ones, and $VAR instead of %VAR%.

Portions Copyright c© 2013–2018 Coherent Knowledge 16

CHAPTER 1. JAVA-TO-ERGO INTERFACES

One can, of course, substitute the contents of the MYCLASSPATH variable directly
into the -classpath %MYCLASSPATH% part of the above Java/Javac invocation com-
mands.

– The variable java.library.path in the above command is optional. It needs to
be set only if XSB is configured to use the native Java interface (which usually is
not the case).

• Some Java applications may employ additional Java properties. For instance, the pro-
gram that uses the low-level API in Section 1.1 (in Step 2) has the line

String fileName = System.getProperty("INPUT FILE");

which means that it expects the property INPUT FILE to be set with the -D option at
the Java invocation time. In general, such additional properties can be also set via the
method System.setProperty() inside the Java application. In our particular case, the
program expects that INPUT FILE is set to point to the flogic basics.flr ERGO file,
which it then loads. In other words, the java command shown above also needs this
parameter:

-DINPUT_FILE="%INPUT FILE%" (Windows)

-DINPUT_FILE="$INPUT FILE" (Linux/Mac)

In general, one such additional parameter is needed for each property that the Java
application queries using the getProperty() method.

1.5 How Do Applications Find the Knowledge Base?

When a Java application starts ERGO, the latter determines the default runtime directory in
which it will work. Usually, this is the directory in which your Java application runs. You
can find out which directory it is by sending the following query to ERGO:

File[cwd->?Dir]@\io.

?Dir will be bound to the runtime directory and Java can get that value as explained earlier.
Your Java application can change that directory via this query:

File[chdir(’....new current dir...’)]@\io.

The simplest basic rule is that all ERGO’s files that your Java application loads, adds, etc.,
must be specified relative to the current directory.

One can also put additional directories to the ERGO’s search path by executing the query

Libpath[add(’....new dir to search...’)]@\sys.

Then your application can use file names not only relative to the runtime directory but also
relative to any of the directories added in this way. Note that this may put many directories
on the search path, and several of them may have similarly named files. Therefore, one must
make sure that the search is unambiguous.

Portions Copyright c© 2013–2018 Coherent Knowledge 17

CHAPTER 1. JAVA-TO-ERGO INTERFACES

1.6 Summary of the Variables and Properties Used by the
Interface

The Java-ERGO interface needs the following variables and properties to be set:

• JAVA HOME – this is an OS environment variable. It is normally set when you install
Java. Normally, Java will not work correctly if this environment variable is not set
correctly.

• The following Java properties must be set for the Java API to work. They can be set
either through the -D option of the java command or inside the Java application via
System.setProperty("propertyname",value).

– FLORADIR — the path to the ERGO installation directory.

– PROLOGDIR — the path to the folder containing XSB executable.

The proper values for these properties can be obtained from ERGO by running these
queries, respectively:

system{installdir=?D}.

system{bindir=?D}.

• The following shell/cmd variable may need to be set, as explained above, if the java and
javac commands cannot be found through the PATH environment variable of your OS.
It can be set by the scripts unixVariables.sh or windowsVariables.bat, whichever
applies to your OS:

– JAVA BIN— the directory where Java executables java and javac live. It is usually
set to $JAVA HOME/bin or %JAVA HOME%\bin, depending on the OS.

1.7 Building the Prepackaged Examples

Sample applications of the Java-ERGO interface are found in the java/API/examples folder
of the ERGO distribution. To build the examples, use the scripts buildExample.sh or
buildExample.bat in the java/API/examples folder, whichever applies. For instance, to
build the flogicbasicsExample example, use these commands on Linux, Mac, and other
Unix-like systems:

cd examples

buildExample.sh flogicbasicsExample

On Windows, use this:

cd examples

buildExample.bat flogicbasicsExample

Portions Copyright c© 2013–2018 Coherent Knowledge 18

CHAPTER 1. JAVA-TO-ERGO INTERFACES

To run the demos, use the scripts runExample.sh or runExample.bat in java/API/examples.
For instance, to run the flogicbasicsExample, use this command on Linux and Mac:

runExample.sh flogicbasicsExample

On Windows, use this:

runExample.bat flogicbasicsExample

Portions Copyright c© 2013–2018 Coherent Knowledge 19

Chapter 2

ERGO-to-Java Interface: Calling
Java from ERGO

by Michael Kifer

This chapter describes the API for opening some standard Java widgets from within ERGO

rules. This API also allows one to call arbitrary Java programs and thereby use ERGO for
scripting Java applications.

The ERGO-to-Java API works both when ERGO runs as a standalone application and when it
is under the control of Ergo Studio. The API calls should work the same in either environment.

2.1 General

The ERGO-to-Java API is available in the system module \e2j and calling anything in this
module will load that module. If, however, for some reason it is necessary to load this module
without executing any operations, one can accomplish this by calling

• ensure loaded@\e2j.

The following additional general API calls are available:

• System[mode->?Mode]@\e2j - the variable ?Mode will be bound to one of the following:

– studio – if ERGO runs as part of Ergo Studio.

– [ergo2java,gui] – if ERGO runs as a standalone mode in an environment that
supports graphics. This is usually the case when one invokes ERGO in a command
window on a personal computer.

– [ergo2java,nogui] – this is usually the case when ERGO runs in a non-graphical
environment, such as a dumb terminal or a command window opened on a remote
server. In a nogui situation, none of the widgets (windows, dialogs, etc.) will be
available. However, the dialog boxes will be simulated through a command-line
interface.

20

CHAPTER 2. ERGO-TO-JAVA INTERFACE

• System[restart]@\e2j – restarts the Java subprocess, if it was killed and is needed
again. This is required very rarely: for instance, when the Java subprocess was killed
outside of ERGO (e.g., via the Task Manager or System Monitor). Java is also killed
when \end is executed at the ERGO prompt.

• System[path(studioLogFile)->?File]@\e2j – also a rarely used feature. The vari-
able ?File gets bound to the location of the Studio log file. This calls fails outside of
the studio environment. In the future, this API call will be extended to include other
file locations that might be deemed useful in the future.

2.2 Dialog Boxes

This part of the API allows the user to pop up various dialog boxes and find out which button
was clicked by the user. Several types of dialog boxes are supported:

• Dialog[show(?Question)->?Answer]@\e2j – pops up a dialog box that asks the user
a question and provides an input text field plus the buttons OK and Cancel. If the user
clicks Cancel the call fails. Otherwise, if OK is clicked, ?Answer gets bound to whatever
the user typed in the input field.

• Dialog[showOptions(?Title,?Message,?Buttons)->?ChosenButton]@\e2j – opens
up a dialog box where the user is presented with a number of buttons to click on. Here
?Title must be bound to an atom—it will be the title of the window; >Message is an
atom that contains the message to be displayed to the user (e.g., “Please click a suitable
button”); and ?Buttons is a list of labels to appear on the buttons presented as the
available choices (e.g., [Milk,Bread,Honey]).

• Dialog[show(?Title,?Message)]@\e2j – pops up a dialog box that shows a message
(?Message) and waits until the user clicks OK. ?Title is the title of the dialog box.

• Dialog[chooseFile->?File]@\e2j – pops up a file chooser. ?File gets bound to the
file chosen by the user.

• Dialog[chooseFile(?ExtensionsList)->?File]@\e2j – like the above, but also takes
a parameter that represents a list of file extensions. Only the files with that extensions
mentioned in the list are shown to the user in the file chooser.

2.3 Windows

This part of the API supports opening, closing, and other operations on windows.

• Window[open(?WindTitle,?Tooltip)->?Window]@\e2j – pops up a new window with
the title ?WindTitle and the tooltip ?Tooltip. The tooltip is appears when the mouse
rests over the window. The variable ?Window gets bound to the Id of the newly created
window. This Id will need to be passed to other API calls that manipulate windows, so
the user must usually store these Ids in some predicates.

Portions Copyright c© 2013–2018 Coherent Knowledge 21

CHAPTER 2. ERGO-TO-JAVA INTERFACE

• Window[setSize(?Win,?Columns,?Rows)]@\e2j – changes the size of the window so it
will have the given number of columns and rows. The system will then try to adjust the
window (whose Id is passed in the first argument ?Win) to approximate the requested
size.

• Window[close(?Window)]@\e2j – closes the specified window.

• Window[alive(?Window)]@\e2j – tells if the window is alive (i.e., not closed by the
user—either programmatically or by clicking the x button in the corner of the window).

2.4 Printing to a Window

The following describes how to print to a previously open window and how to erase the
window contents.

• Window[clear(?Window)]@\e2j – erases the contents of the given window.

• Window[print(?Window,?Text)]@\e2j – prints ?Text to a given window. ?Text spec-
ifies what to print and how. Several colors are supported (black, red, brown, green,
purple, blue, magenta, orange, and default), as well as a few faces (italic, bold,
boldital).

?Text is either a text descriptor or a list of text descriptors, where a text descriptor is

– a Hilog term; or

– modifier(Hilog term)

Here modifier is one of the aforesaid colors or faces. Not all faces may be available for
the default fonts on your system so, say, boldital may appear as italic ot as bold.
Likewise, colors may look different on different screens.

Note that if you want to print a term like red(tomato) then you would have to wrap
it in one of the above modifiers, like default(red(tomato)) (to print red(tomato)

in the default color—usually black) or green(red(tomato)) (to print red(tomato)).
Otherwise, if red(tomato) is not wrapped as described, tomato will be printed instead.

Examples. Let us assume that window with Id 3 is open. Then:
Window[print(3,magenta(’this is red(herring), 1lb’))]@\e2j will print this is
red(herring), 1lb.
Window[print(3,[magenta(’this is a ’), green(2), italic(’ pound ’),

red(herring)])]@\e2j will print: this is a 2 pound herring.

2.5 Scripting Java Applications

The java scripting API allows the user to load Java jar-files, invoke methods that exist in the
public classes of those jar-files, and process the results.

• System[addJar(?Jar)]@\e2j – load the specified jar-file into the system.

Portions Copyright c© 2013–2018 Coherent Knowledge 22

CHAPTER 2. ERGO-TO-JAVA INTERFACE

• JavaObjSpec[message(JavaMethodWithArgs) -> Result]@\e2j – invoke Java method
on a Java object and return the result.
This feature is experimental and incomplete. It does not support all Java data structures
and not all kinds of methods can be applied.

JavaObjSpec in the above message(...) API can have several forms:

• oid(Integer): When Java returns an object, it is registered by ERGO and is represented
by an integer, e.g., 345. In order to invoke a Java method on it, the JavaObjSpec must
be specified as oid(345).

• If JavaObjSpec is an integer, float, or atom in ERGO then it is interpreted as a
Java long, double, or string, respectively. Java methods that apply can be used in
JavaMethodWithArgs. For instance,

?- ’123abc789’[message(split(abc))->?P]@\e2j.

?P = [’123’, ’789’]

?- abc23op[message(matches(’.+23.*’))->?P]@\e2j.

?P = \true

?- abcdf[message(getBytes)->?R]@\e2j.

?R = "abcdf"^^\charlist

• If JavaObjSpec is a list, it is interpreted as an array of objects. For instance, the list
[pp,i(8),k(u,m)] is mapped into a Java array and [1] is a method applied to that
array, which returns the second element.

?- [pp,i(8),k(u,m)][message([1])->?P]@\e2j.

?P = i(8)

?- [pp,i(8),k(u,m)][message(length)->?P]@\e2j.

?P = 3

• If JavaObjSpec is byte(smallNumber), short(shortinteger), or int(integer) then it is
interpreted as a byte or int constant.

• If JavaObjSpec is term(someHiLogTerm) then some-
HiLogTerm is mapped into a TermModel object—see
http://interprolog.com/ipjavadoc/com/declarativa/interprolog/TermModel.html

for the details of this class, which has methods to de/compose terms on the Java side.

?- term(p(a,b))[message(getFunctorArity)->?P]@\e2j.

?P = ’p/2’

• If JavaObjSpec is of the form array(type,list) then this is mapped to an array of con-
stants of the given type (string, byte, int, float). For instance

?- array(int,[2,7,99])[message([2])->?P]@\e2j.

?P = 99

Portions Copyright c© 2013–2018 Coherent Knowledge 23

http://interprolog.com/ipjavadoc/com/declarativa/interprolog/TermModel.html

CHAPTER 2. ERGO-TO-JAVA INTERFACE

• If JavaObjSpec is of the form Wrap(const), where Wrap is one of Boolean, Charac-
ter, Byte, Double, Float, Integer, Long, or Short and const is of the appropriate
ERGO type, then this will be mapped into an object of type java.lang.Boolean,
java.lang.Character, etc., respectively. Note that these are objects, while the wrap-
pers int, short, byte, etc., which we introduced earlier are non-object constants.

• Additionally, to be able to execute static methods, fully-qualified classes wrapped with
class can be used. For instance,

?- class(’java.lang.String’)[message(format(’abc=%d %s’,12,iiii))->?R]@\e2j.

?R = ’abc=12 iiii’

?- class(’java.lang.String’)

[message(String(array(byte,[119,111,114,108,100])))->?P]@\e2j.

?P = world

• It is further possible to send a message to a static variable (i.e., invoke a method on the
object held by that static variable, as in java.lang.System.out.println("Hello"))
in a class as follows:

?- class(’java.lang.System’+out)[message(println(Hello))->?R]@\e2j.

Hello

?R = \@? // a null value because println returns void

?- class(’java.lang.System’+out)[message(printf(’%1.16g’, 69.1))->?R]@\e2j.

69.10000000000000

?R = oid(1)

Note that here out is the static variable in class java.lang.String to which the mes-
sages are being sent.

Currently it is not possible to get the value of a static variable unless there is a getter-
method for that variable.

The same mapping conventions are applied to the arguments of the method-expressions passed
to message(...) in our API call.

Portions Copyright c© 2013–2018 Coherent Knowledge 24

Chapter 3

pyergo: A Python-to-ERGO

Interface
by Michael Kifer

This interface allows Python programs to start ERGO, load knowledge bases into it, and then
query and modify them. One can also talk directly to the underlying Prolog engine, XSB.
This API works both with Python 2.7 and 3+.

3.1 Introduction

The pyergo interface consists of four types of APIs: one for starting and closing ERGO sessions,
one for querying ERGO, one for talking directly to XSB, and one for parsing the results. A
fairly extensive example of a program that does both is found in

.../Ergo/python/pyergo_example.py

in the ERGO distribution. This program provides several examples of using the pyergo

interface, including various edge cases and exception handling. The easiest way to try these
examples is via the provided shell scripts,

.../Ergo/python/runpyergo.sh -- Linux/Mac

.../Ergo/python/runpyergo.bat -- Windows

One only has to change the two variables in those scripts ERGOROOT and XSBARCHDIR.

To make it possible for your Python program find ERGO, two parameters are to be provided:
the architecture directory, called XSBARCHDIR in those scripts and in pyergo example.py,
and the root directory for the ERGO reasoner, which we called ERGOROOT. The names of these
variables are, of course immaterial, but we will use these names here for easy reference. Pay
attention to how this information is passed from the scripts to the program via the sys.argv
array, as this is one of the most convenient methods.

25

CHAPTER 3. PYTHON-TO-ERGO INTERFACE

How will you know what to substitute for the aforesaid ERGOROOT and XSBARCHDIR? This is
easy! Just start ERGO and type these two queries:

?- system{installdir=?Ins}. // gives ERGOROOT

?- system{archdir=?Arch}. // yields XSBARCHDIR

The first query will give you ERGOROOT and the second XSBARCHDIR.

Next your program needs to be told where the interface can be found. In our example, this
is accomplished via

import sys

sys.path.append(ERGOROOT.replace(’\\’,’/’) + ’/python’)

Of course, you will have to replace ERGOROOT here appropriately, as explained. Note that
forward slashes are preferred, although backward slashes are also recognized in Windows
(sometimes they must be escaped with another backslash to satisfy Python syntax). Finally,
import the API as follows:

from pyergo import \
pyergo_start_session, pyergo_end_session, \ to start/end Ergo session

pyergo_command, pyergo_query, \ to talk to Ergo

HILOGFunctor, PROLOGFunctor, \ to parse results from Ergo

ERGOVariable, ERGOString, ERGOIRI, ERGOSymbol, \
ERGOIRI, ERGOCharlist, ERGODatetime, \
ERGODuration, ERGOUserDatatype, \
pyxsb_query, pyxsb_command, \ to talk to XSB directly

XSBFunctor, XSBVariable, XSBAtom, \ to parse results from XSB

XSBString, \
PYERGOException, PYXSBException to process exceptions

In most cases you will need only a small subset of these functions, but importing them all is
easy, does not hurt, and is useful in case you later extend your program. (Of course, delete
the blue comments.)

3.2 Connecting to ERGO

This part of the API consists of two commands: pyergo start session() — to start ERGO

and connect to it, and pyergo end session() — to unload ERGO.

• pyergo start session(): This takes two arguments, the aforementioned directories:

pyergo_start_session(XSBARCHDIR,ERGOROOT)

Do not forget to replace XSBARCHDIR and ERGOROOT, as discussed. Errors will be thrown
if one of these directories is missing, unreadable, or does not look like belonging to a
valid ERGO installation.

Portions Copyright c© 2013–2018 Coherent Knowledge 26

CHAPTER 3. PYTHON-TO-ERGO INTERFACE

• pyergo end session(): Used to unload ERGO. For example,

pyergo_end_session()

This command is not needed if your program exits soon after unloading, but it can save
resources, if your Python program uses ERGO in the beginning only and then continues
to work for a significant period of time till the end, without accessing the knowledge
base.

3.3 Talking to ERGO

This part of the API consists of two commands also: pyergo command() and pyergo query().
The difference is that the first is not expected to return any results and exception is thrown
if the command returns False. It also throws exceptions if something went wrong during the
compilation or execution of the command. In contrast, pyergo query() throws far fewer
exceptions.

• pyergo command(): Execute an ERGO command passed as a parameter. Takes a query
and treats it as a command, i.e., ignores the results and expects it to succeed. This is
usually used to load a file, do something that does not return results (e.g., insert facts
or rules), and when the command returns False then it is treated as an error so an
exception is raised. For example,

pyergo_command("writeln(Ergo = ’aaaa bbb’)@\\io.")

pyergo_command(’insert{qq({11,fff(22)},33)}.’)

pyergo_command("\\false.") # will throw an error

Note that whenever ERGO requires backslashes, they must be doubled and the com-
mands must end with a period, as usual.

• pyergo query(): Execute a query passed as a parameter and get results. Like
pyergo command(), it takes an ERGO query, but that query may or may not have
results and when it does the results are returned. The results are returned as an ar-
ray of 4-tuples, which can be iterated over, as explained in the example below. Note:
pyergo command() never throws an exception that has to do with the compilation or
execution of a query. Instead, it returns that exception information as part of the re-
sult. The only exception it is supposed to throw is when a query returns an unsupported
variable binding, i.e., something that is not a Prolog or HiLog term (like, for example,
a reified formula).

Here is how one gets results from a query. Suppose qq/1 was previously assigned the tuples
(11, 33) and (fff(22), 33). Then:

for row in pyergo_query(’qq(?X,?Y). ’):

print("result: ",row[0],row[1],row[2],row[3].value)

will print (except the top line, which is added for readability):

Portions Copyright c© 2013–2018 Coherent Knowledge 27

CHAPTER 3. PYTHON-TO-ERGO INTERFACE

Result Compile Status Truth Value Exception

[(’?X’,11),(’?Y’,33)] (’not_eof’,’success’) True normal

[(’?X’,HILOGFunctor(name=fff,args=[22])),(’?Y’,33)]

(’not_eof’,’success’) True normal

Here the compile status says whether the query was compiled without errors and whether
an end of file (or string) was reached. In our case, it was not (not eof) because the query
string has some white space after the period, but usually it says eof. The truth value can be
True, False, or None—the latter standing for “undefined” in ERGO terms. Finally, exception
is normal, if no runtime exception happened in the query execution, and the actual exception
is shown otherwise.

The most important component is the first, row[0]. It is a list of variable name/binding pairs,
where the variable names are taken from the query (’?X’ and ’?Y’ in our case). These are
the actual query answers. If a query has no output variables, but the query is true, an empty
list is returned. Silent variables (the ones that start with an underscore) are not returned.
Note that the results returned can be complex terms (they are always returned as Prolog, not
HiLog terms), like the Python object HILOGFunctor(name=fff,args=[22]) in our case. We
will provide the details of that part of the API in Section 3.5, but here is an example of how
to unpack such objects:

for row in pyergo_query(’qq(?X,?Y). ’):

[(XVarname,XVarVal),(YVarname,YVarVal)] = row[0]

if isinstance(XVarVal,HILOGFunctor):

#Xresult=XVarname+’=’+str(XVarVal.name)+’ ’+str(XVarVal.args)

Xresult=XVarname+’=’+str(XVarVal)

elif isinstance(XVarVal,PROLOGFunctor):

#Xresult=XVarname+’=’+str(XVarVal.name)+’ ’+str(XVarVal.args)+’@\\plg’

Xresult=XVarname+’=’+str(XVarVal)

else:

Xresult=XVarname+’=’+str(XVarVal)

if isinstance(YVarVal,HILOGFunctor):

#Yresult=YVarname+’=’+str(YVarVal.name)+’ ’+str(YVarVal.args)

Yresult=YVarname+’=’+str(YVarVal)

elif isinstance(YVarVal,PROLOGFunctor):

#Yresult=YVarname+’=’+str(YVarVal.name)+’ ’+str(YVarVal.args)+’@\\plg’

Yresult=YVarname+’=’+str(YVarVal)

else:

Yresult=YVarname+’=’+str(YVarVal)

print("result: ",Xresult+" and "+Yresult,row[1],row[2],row[3].value)

The commented out parts of this example show how to access various parts of the complex
answers returned as HiLog or Prolog terms.

Note: only elementary data types, Prolog, and HiLog terms can be returned from Ergo to
Python. More complex things, like reified predicates and frames, cannot be returned.

The commands pyergo query() and pyergo command() raise Python exceptions, if bad
things happen during the execution. These exceptions are Python objects of the form

Portions Copyright c© 2013–2018 Coherent Knowledge 28

CHAPTER 3. PYTHON-TO-ERGO INTERFACE

PYERGOException(query=..., command=..., message=...)

Some of the components may be missing in specific cases (e.g., query in case of a command,
and vice versa).

3.4 Talking to XSB

This part of the API is for expert users only whose applications require talking to
the underlying XSB engine directly. It consists of the commands pyxsb command() and
pyxsb query(). The first is like pyergo command() except that Prolog syntax is used for the
query. The second, pyxsb query(), differs more. Like pyergo query(), it returns an iterable
array of tuples, but the number of components in those tuples is arbitrary and each element
corresponds to a variable binding in the query. The bindings are listed in the lexical order of
appearance of the variables in the query. Silent variables are treated as any other variable,
duplicate occurrences of the same variable are omitted, and the names of the variables are not
made available. Likewise, compilation information is not returned and neither is the truth
value, so it is not easily possible to tell whether a query is true or undefined. For example,

for row in pyxsb_query("p(X,Y,Y,_W).") :

print(row[0],row[1],row[2])

Here row[0] corresponds to X, row[1] to Y, and row[2] to W (recall that silent variables are
not ignored in the XSB interface). True and undefined answers to the query will be printed
without distinction. To separate these two types of answers, the XSB predicate call tv/2

can be used (read about it in the XSB manual).

Like with ERGO queries, the bindings (row[0], row[1], etc.) can be complex terms and
variables. Unpacking that information is the subject of the next section.

One last difference is that pyxsb query() and pyxsb command() raise Python exceptions, if
bad things happen during the execution. The exceptions are Python objects of the form

PYXSBException(code=..., query=..., command=..., type=..., message=...)

Some of the components may be missing in specific cases (e.g., query in case of a command,
and vice versa).

3.5 Unpacking the Results

Unpacking the results returned by ERGO and XSB is conceptually similar. For integers,
floats, and lists, both ERGO and XSB use the same native Python classes. However, for more
complex data structures, pyergo query() and pyxsb query() use different Python classes.
ERGO has more data types than XSB and thus needs more classes to represent them, so we
discuss these issues separately.

Portions Copyright c© 2013–2018 Coherent Knowledge 29

CHAPTER 3. PYTHON-TO-ERGO INTERFACE

3.5.1 Unpacking Results from pyergo query()

• ERGOSymbol(value=string): this represents ERGO abstract symbols ("..."ˆˆ\symbol).
To get the actual string out of an XSBAtom-object, just use obj.value.

• ERGOString(value=string): this represents the ERGO datatype "..."ˆˆ\string.

• ERGOCharlist(value=string): this represents lists or Unicode characters and corre-
sponds to the ERGO datatype \charlist.

• ERGOIRI(value=string): this type of an object comes from an ERGO \iri literal.

• ERGODatetime(date=date-list,time=time-list). A Python object of this form
would come from an ERGO \datetime literal. For instance, the ERGO

\datetime-literal "2008-6-27T10:30:55.23456-0:20"^^\datetime will give rise to
ERGODatetime(date=[1,2008,6,27],time=[10,30,55.23456,-1,0,20]). In a date-
list like [1,2008,6,27], 1 means the year is CE and -1 means BCE. The rest stands
for the year, month, and day. In a time-list, the elements are hours, minutes, seconds,
UTC offset sign (1 or -1), UTC offset hour, and UTC offset minutes. Seconds and
milliseconds are represented together using one positive decimal number.

A \time object from ERGO would give rise to an ERGODatetime object in Python in
which the date component is absent. A \date object in ERGO would give rise to a
ERGODatetime object in which the time-component is absent.

• ERGODuration(value=duration-list). This type of a Python ob-
ject corresponds to an ERGO \duration-literal. For instance,
"-P22Y2M10DT1H2M3.0S"^^\duration would give rise to a Python object of the
form ERGODuration(value=[-1,22,2,10,1,2,3.0]). The components of the
duration-list are sign (of the duration, 1 or -1), years, months, days, hours, minutes,
and seconds (which is a decimal number that represents both seconds and milliseconds).

• ERGOVariable(name=string): this type of objects may be returned if query results
contain unbound variables. Note that the actual names of these variables are im-
material and they are almost always different from what was in the query. The
only thing that matters is the equality among these names. For instance, if a tu-
ple of bindings like (ERGOVariable(name=’ Var123’), ERGOSymbol(value=’abc’),

ERGOVariable(name=’ Var123’)) is returned, it means that the first and the last com-
ponents in that answer are the same variable.

• PROLOGFunctor(name=string, args=list, module=xsb-module) and
HILOGFunctor(name=string, args=list): these classes are used to represent Prolog and
HiLog terms, respectively.

Typically, unpacking of an answer takes the form or testing what kind of
object it is (e.g., isinstance(obj,ERGOVariable), isinstance(obj,ERGOString),
isinstance(obj,ERGOIRI), isinstance(obj,HILOGFunctor), isinstance(obj,int)) and
then proceeding to extract the relevant attributes of the object. An example of this was
shown in Section 3.3.

Portions Copyright c© 2013–2018 Coherent Knowledge 30

CHAPTER 3. PYTHON-TO-ERGO INTERFACE

3.5.2 Unpacking Results from pyxsb query()

The function pyxsb query() uses these classes for the data types it returns:

• XSBAtom(name=string): this represents XSB atoms (i.e., ERGO symbols). To get the
actual atom out of an XSBAtom-object, just use obj.name.

• XSBString(value=string): this represents lists or Unicode characters. This class is
provided for easier readability: this data type does not really exists in XSB in its own
right.

• XSBVariable(name=string): this type of objects may be returned if query results
contain unbound variables. Note that the actual names of these variables are im-
material and they are almost always different from what was in the query. The
only thing that matters is the equality among these names. For instance, if
a tuple of bindings like (XSBVariable(name=’ Var123’), XSBAtom(name=’abc’),

XSBVariable(name=’ Var123’)) is returned, it means that the first and the last com-
ponents in that answer are the same variable.

• XSBFunctor(name=string,args=list,module=xsb-module): this represents a complex
term with the functor name string and arguments lists. The elements of the list can be
terms, atoms, variables, etc. XSBFunctor objects is used only by pyxsb query().

Typically, unpacking of an answer takes the form or testing what kind of ob-
ject it is (e.g., isinstance(obj,XSBVariable), isinstance(obj,XSBString),
isinstance(obj,XSBFunctor), isinstance(obj,HILOGFunctor), isinstance(obj,int))
and then proceeding to extract the relevant attributes of the object. An example of this was
shown in Section 3.3.

Portions Copyright c© 2013–2018 Coherent Knowledge 31

Chapter 4

HTTP and Web Services
by Michael Kifer

This chapter describes the API for issuing HTTP requests to Web servers. This facility could
be used for reading and querying Web resources and, perhaps more importantly, for talking
to Web services.

4.1 General

The ERGO-to-Java API is available in the system module \http and calling anything in this
module will load that module. If, however, for some reason it is necessary to load this module
without executing any operations, one can accomplish this by calling

• ensure loaded@\http.

4.2 The HTTP API

The most important call in the ERGO Web API is http(...), described next.

• ?URL[http->(?Result,?Warnings)]@\http — a basic request to bring back a Web
page or to invoke a RESTfull service via a GET HTTP method. The result from
the server is bound to ?Result and the errors/warnings from the server, if any, to
?Warnings. A result is an atom, which typically is in the HTML, XML, or JSON
format. The warnings are represented as lists of atoms (one per warning) or as an
empty list, if no warnings.

If ?Result is a zero-length atom, it means that the request failed for various reasons.
Such reasons may or may not be explained as a warning—depending on the server.

• ?URL[http(?OptionList)->(?Result,?Warnings)]@\http — a more complex request
to a server, which specifies the requirements by passing a list of options. This API call
supports GET, POST, PUT, and DELETE HTTP requests and can be used both for
RESTfull as well as non-RESTfull Web services. The option list has this form:

32

CHAPTER 4. HTTP AND WEB SERVICES

[option1, option2, ..., optionN]

where each option either has the form optionName = value or is a Boolean option
of the form optionName. (Currently there is only one Boolean option: delete.) No
optionName can occur in the list more than once, or an error is issued. The following
options are supported:

– redirect: the value must be true (default) or false. Tells the server whether to
follow redirection or not.

?- ’https://google.com’[http([redirect=false])->?R]@\http.

This will respond with an HTML document saying “The document has moved.”

– secure: the value must be false (default) or a path-name to a local file,
which contains certificates. The certificates must be in the PEM format
https://support.ssl.com/index.php?/Knowledgebase/Article/View/19/0/der-vs-crt-vs-cer-

Such files typically have the .pem or .crt extension.

If a file-path is specified, the server is verified with respect to the certificate. If
unsuccessful, ?Result is a zero-length atom.

– timeout: the value is a positive integer specifying the number of seconds to wait
before aborting the request.

– useragent: the name of the user agent to use in the HTTP header when hand-
shaking with the server. Some servers require this, but most do not. Servers have
no way of verifying the user agent field. Example:

?- ’http://myurl.my’[http([timeout=7, useragent=’My Ergo crawler’])

-> (?Res,?Warn)]@\http.

– header: The value is either an atom (if just one header needs to be passed) or a
list of atoms, to specify several headers at once. Examples:

header=’User-Agent: just me’

header=[’Content-Type: application/json’,’Authorization: Bearer abcdefg’]

– auth: the value must be user/password. This is used if the web site requires
authentication. For example,

auth=justme/mypasswd

– post, put: the value is an atom, typically in the JSON or XML format.

These options, if given, will contact the server using the HTTP methods POST or
PUT, respectively. If none of these options is given (and no delete option), the
GET method is used. One cannot specify both of these at once, and the HTTP
method must match what the server expects. In case of a mismatch, the server
may (or may not) send an error message back, which would then be available in
the warnings list mentioned above, or as contents in ?Result. Example:

?- ’https://myurl.my’[http([auth=’me@my’/’my+pw’,

post=’{"message": "Hello"}’])->?R]@\http.

– delete: this is the only Boolean option, so it is specified just as delete. It tells the
server to use the DELETE HTTP method. This option cannot be used together
with post or put options. Example:

Portions Copyright c© 2013–2018 Coherent Knowledge 33

https://support.ssl.com/index.php?/Knowledgebase/Article/View/19/0/der-vs-crt-vs-cer-vs-pem-certificates-and-how-to-convert-them

CHAPTER 4. HTTP AND WEB SERVICES

?- "https://google.com"^^\iri[http([delete])->?R]@\http.

(will respond with an HTML file saying “The request method DELETE is inap-
propriate for the URL”). This example also illustrates the point that the URL can
be given as a plain symbol or as an \iri data type.

4.3 Miscellaneous

This package includes a number of other useful calls that are often used together with the
http(...) method.

• ?URL[properties->?Props]@\http — returns a list of properties of ?URL:
[PageSize,ModTime,RedirectedURL]. Here PageSize is the size of the page in bytes,
and ModTime is the last modification time expressed as the number of seconds since
epoch (1900-01-01). Some servers might not return one or both of the last two param-
eters, in which case -1 is returned. The last component is the actual URL of the page.
If the page at ?URL was not redirected then RedirectedURL is the same as the original
URL. If that page has a redirection then this and all the intermediate redirections are
followed and RedirectedURL is the final URL in that chain.

This method contacts the network, but it is lighter than http(...) and it retrieves
properties only.

Example:

?- \"http://expedia.com"[properties->?R]@\http.

?R = [124787, 1509446769, ’http://www.expedia.com’]

• ?URL[properties(Options)->?Props]@\http — Same as before, but takes a list of
options as a parameter. The options are the same as for http(...) but some of them
(e.g., put, post, delete) are ignored. Example:

?- ’http://google.com’[properties([redirect=false])->?R]@\http.

?R = [-1, -1, ’http://google.com’]

?- ’http://google.com’[properties([redirect=true])->?R]@\http.

?R = [-1, -1, ’http://www.google.com’]

• ?URL[encoding->?Enc]@\http — sometimes it is necessary to mangle URLs by re-
placing special characters like ’/’, ’:’, etc., so they could be used in various situations,
like being sent over the network. This process is known as URL-encoding. The above
method returns a list consisting of three components: [Dir,File,Ext]. Dir is the direc-
tory portion of the URL in the URL-encoded form, File is the file portion (sans the
extension; also URL-encoded), Ext is the file extension portion.

Network is not contacted in order to produce these results, so this method is very fast.

• ?Item[base64encode->?Item2]@\http — base 64 encoding. When sending informa-
tion over the network, it is necessary to convert some of the special characters into
“benign” ACSII characters that would not be mangled by the network. This is called

Portions Copyright c© 2013–2018 Coherent Knowledge 34

CHAPTER 4. HTTP AND WEB SERVICES

base 64 encoding. This is similar to URL encoding, but is not specific to URLs. Here
Item (the source) can be a character list, an atom, and in the Web situation it is most
commonly a file specified as file(Path). The output, Item2, is always an atom or a
variable that will be bound to an atom. This is used, for example, to upload files to
Web services. Note that if the source contains the ASCII character ’\0’ then this source
cannot be represented as an atom, for otherwise it will be encoded only partially. So, a
list-representation or a file should be used.

• ?Item[base64decode->?Item2]@\http — base 64 decoding. This is the opposite pro-
cess, used when receiving information from the networks and decoding it. Here, Item—
the source—is always an atom, but Item2 can be an atom, a variable (that will be
bound to an atom), file(Path), or list(CharlistOrVariable). In case of file(Path),
the result of decoding is stored directly to the specified file. The last representation
is used when the result of the decoding cannot be represented as an atom because the
decoded string contains the ASCII character ’\0’ and one does not want to store the
result in a file. So, when Item2 has the form list(...), it directs the system to decode
the source as a list of characters.

Portions Copyright c© 2013–2018 Coherent Knowledge 35

Chapter 5

Querying SQL Databases
by Michael Kifer

This chapter describes the API for SQL queries against relational databases.

5.1 Connecting to a Database

The ERGO-to-SQL API is available in the system module \sql and calling anything @\sql will
load that module. If, for some reason, it is necessary to load this module without executing
any operations, one can accomplish this by calling

• ensure loaded@\sql.

Prior to performing any operation on an SQL database the user must open a connection to
that database. ERGO supports two database drivers:

• odbc: the general driver to all relational databases that support the ODBC protocol.
All major database products and open-source databases support this protocol.1 The
user must be familiar with the basics of setting up ODBC data sources (called DSNs),
which specify database drivers and the target databases.

• mysql: the native driver for MySQL databases (for Linux, Mac, Windows (64 bit)).

The commands to connect to a database for these two drivers are slightly different.

• The ODBC driver:2

odbc[open(?ConnectId,?DSN,?User,?Password)]@\sql.
Here ?ConnectId must be bound to a Prolog atom (note: an atom, not a variable) that
will henceforth identify the connection. ?DSN must be bound to an ODBC DSN (data
source name), and ?User and ?Password must be the user name and the password to

1 There have been serious problems with ODBC support on Linux and Mac for MySQL server 5.7.
2 The ODBC driver for MySQL 5.7 has a number of problems on Linux and Mac, so we recommend to use

MySQL 5.6, if ODBC is required.

36

CHAPTER 5. QUERYING SQL DATABASES

be used to log into the database—both must be Prolog atoms.
Example: odbc[open(id1,mydbn,me,mypwd)]@\sql.

• The MySQL driver (Linux, Mac, Windows (64 bit)):
mysql[open(?ConnectId,?Server,?Database,?User,?Password)]@\sql.
?Server must be bound to the address of the desired database server. Usually this is
an IP address such as 123.45.67.89 (with optional port number, e.g., 123.45.67.89:6666)
or a domain name, like abc.example.com — again with optional port number. On a
local machine, the server would usually be just localhost.

The meaning of the other parameters is the same as for the ODBC driver.

Example: mysql[open(id2,localhost,test,me,mypwd)]@\sql.

Note that one can use the two drivers simultaneously for different connections. However,
the connection Ids must be distinct whether the same or different drivers are used. A
connection Id can be reused if it was previously closed (see below).

When done with the database, it is recommended to close the connection to that database
for two reasons:

• To avoid hitting the limit of 200 on the number of databases that one can work with at
the same time.

• To release the resources allocated by the OS to work with that open connection.

The syntax for closing connections is

?ConnectId[close]@\sql.

For example, id2[close]@\sql.

5.2 Queries

The ERGO-to-SQL API provides a simple query interface to send SQL queries (SELECT),
updates (INSERT, DELETE, etc.), schema definition (CREATE), and other commands.

• ?ConnectId[query(?QueryId,?QueryList,?ReturnList)]@\sql.
?ConnectId is the Id of a previously open (and not closed) connection. ?QueryId must
be bound to an atom that will represent the query statement that will be created as a
result of this command. ?QueryList is a list that must concatenate into a Prolog atom
that forms a valid SQL statement. Components of the list can be variables and terms,
and in this way the query can be constructed at run time. ?ReturnList is a list of
variables that must correspond to the list of items in the SELECT query. For other types
of SQL statements, ?ReturnList should be an empty list.

Examples: Assume that our database has a table Person(name char(40),addr

char(100),age integer). Then the following is a legal query:

Portions Copyright c© 2013–2018 Coherent Knowledge 37

CHAPTER 5. QUERYING SQL DATABASES

?- ?Tbl=Person, ?Age = 33,

id1[query(qid,[’SELECT name, addr FROM ’,?Tbl, ’ WHERE age=’, ?Age],

[?Name,?Address]

)

]@\sql.

Observe how the SQL query here is constructed at runtime: the table and the value of
age are bound only when the above ERGO query is executed.

Here is an example of an update statement:

id2[query(qa,

[’insert into Person(name,addr,age)

values("mike","unknown",NULL)’],

[]

)

]@\sql.

• Preparing queries.
Frequent databases queries can be precompiled and optimized once and then executed
multiple times, which is the recommended modus of operandi. (The previously described
query interface is more flexible, but less efficient; it is typically used for infrequent queries
or queries that must be constructed at run time, as in the above example.)

For frequent queries that are known in advance, a two-step process is used. First, the
query is prepared (i.e., compiled and optimized) and then executed. The preparation
and execution of such queries allows certain level of flexibility by letting the user to
place question marks ? in lieu of some of the constants (these cannot be column names,
table names, variable names, etc. — only regular constants). These question marks can
be replaced by actual constants at the query execution time.

– ?ConnectId[prepare(?QueryId,?QueryList)]@\sql.
The meaning of the parameters is the same as before.

Example:

id1[prepare(qid,[’SELECT T.addr FROM ’, Person,

’ T where T.name = ? and T.age = ?’]

)

]@\sql.

The query Id qid can then be used to execute the above query, as shown below.

– ?QueryId[execute(?BindList,?ReturnList)]@\sql.
?QueryId must be bound to the query Id of a previously prepared query.
?BindList must be a list of values that is supposed to be substituted for the
?’s in the prepare command; the ?’s are substituted in the order in which they
appear in the prepare statement.

Example:

qid[execute([mike,44],[?Address])]@\sql.

Portions Copyright c© 2013–2018 Coherent Knowledge 38

CHAPTER 5. QUERYING SQL DATABASES

• Closing query Ids.
Like database connections, query Ids must be closed in order to release the resources
that the OS allocates to the query. There is also a limit of 2000 on the number of active
queries, which can be easily reached in applications that query the database heavily.
The command for closing the query Ids is:

?QueryId[qclose]@\sql.

For instance,

qid[qclose]@\sql.

Finally, we need to mention that when a NULL value is returned as a result of a query, it is
returned as a Prolog term NULL(?)@\plg, which is the internal representation of the ERGO

null quasi-constant \@?. This implies that if such a term is used as an argument to a literal
that is to be inserted into the database, it will be converted to the NULL value.

Portions Copyright c© 2013–2018 Coherent Knowledge 39

Chapter 6

Querying SPARQL Endpoints
by Paul Fodor and Michael Kifer

This chapter describes the ERGO interface to SPARQL endpoints (i.e., remote processors that
support the SPARQL protocol—both querying and update statements), which is based on
Apache Jena. It should be noted from the outset that several triple stores implement SPARQL
extensions that go well beyond the SPARQL 1.1 protocol and Jena might not support some of
them. The user will see syntax errors whenever such extensions are used in SPARQL queries
or update statements.

6.1 General

The ERGO-to-SPARQL API is available through the ERGO system module \sparql and
calling anything @\sparql will load that module. If, however, for some reason it is necessary
to load this module without executing any operations, one can accomplish this by calling

• ensure loaded@\sparql.

Prior to performing any queries against a SPARQL endpoint the user must open a connection
to that endpoint. A connection is identified via ERGO symbols, like MyConnection123, which
are chosen by the user. An endpoint is usually capable of supporting either queries (query
endpoint) or updates (update endpoint), but not both.

• System[open(?ConnectionId,?EndpointURL,?Username,?Password)]@\sparql.
Binds ?ConnectionId to a query endpoint specified by the ?EndpointURL URL. (See
about update endpoints below.) ?ConnectionId must be bound to an ERGO symbol
(Prolog atom); it is a connection identifier, and it is chosen by the user. After opening,
the connection Id can be used to query the endpoint without re-authentication.
?EndpointURL must be the URL of a valid query endpoint to which the user wishes
to connect. It must be an atom. Username, and ?Password must be bound to Prolog
atoms (ERGO symbols).
Example:

40

CHAPTER 6. QUERYING SPARQL ENDPOINTS

System[open(DBPEDIAConnectionID,’http://dbpedia.org/sparql’,’’,’’)]@\sparql.
Binds the symbol DBPEDIAConnectionID to the given query endpoint with empty
credentials (no user id or password). If the connection fails due to an error at the
endpoint URL or the user credentials, an error will be issued. If the connection is
successful, the query will succeed and one can use DBPEDIAConnectionID to query the
specified endpoint.

• System[open(update(MyConnection),’http://localhost:7200/repositories/test/

statements’,’’,’’)]@\sparql.
Due to the peculiarities of the SPARQL 1.1 protocol, triple stores usually maintain
different endpoints (with different URLs!) for query and update operations. So, to
both query and update the same triple store one must open two connections. The
above form of the open statement is used if one wants to connect to an update endpoint.

• System[connectionType(?ConnectionId) -> ?Type]@\sparql.
Sometimes one might need to test programmatically if a particular connection is already
open and get its connection type. This can be accomplished with the above call.
If the connection is open, ?Type gets bound to query or update—whichever applies. If
the connection is not open, the call fails.

• System[connectionURL(?ConnectionId) -> ?URL]@\sparql.
Like connectionType but returns the URL of the connection’s target endpoint instead
of the connection’s type.

• System[close(?ConnectionId)]@\sparql. ConnectionId must be an id of a previ-
ously open (and not yet closed) connection to a SPARQL end point. The method closes
the connection and releases the space it holds.
Example:
System[close(DBPEDIAConnectionID)]@\sparql.

It should be noted that closing a connection is usually not necessary because each connection
involves a relatively small memory overhead and the memory is released when ERGO exits.
This only becomes a problem if the user opens (and keeps open) hundreds of thousands
connections. The only real inconvenience with keeping many connections open is that one
must keep all the names distinct.

Finally, it should be kept in mind that all the definitions and examples in this chapter show
ERGO statements in the context of a query or of a rule body. It should be clear that these
statements cannot be put in rule heads. If one wants to execute them from within a file, they
have to be prefixed with a ?-, as usual. For instance,

?- System[close(DBPEDIAConnectionID)]@\sparql.

6.2 Queries and Updates

The ERGO-to-SPARQL API supports several kinds of queries: select, selectAll,
construct, ask, describe, describeAll, and update. Recall that SPARQL normally uses
different endpoints for queries and updates. Accordingly, the first six statements utilize

Portions Copyright c© 2013–2018 Coherent Knowledge 41

CHAPTER 6. QUERYING SPARQL ENDPOINTS

connections that were previously open and bound to SPARQL query endpoints. The last
(update) statement utilizes connections that are bound to update endpoints.

• Query[select(?ConnectionId,?Query)->?Result]@\sparql
runs a SPARQL SELECT ?Query and successively binds ?Result to each answer via
backtracking. The ?Query must be an ERGO atom or a list. In the former case, the
atom must form a valid SPARQL query. In the latter case, the list elements (which
typically are ERGO atoms and variables) are converted into atoms and concatenated
to form a valid SPARQL query. If the query is not valid, a syntax error is issued.
Forming a query using lists is usually necessary only if one wants to pass values through
variables from ERGO to the query. The first example below does not pass any variables
to the query, so we represent the query simply as an atom. The second example is more
interesting, as it passes the ERGO variable ?Subj into the query and so we use a list.
Example:
Query[select(DBPEDIAConnectionID,’SELECT * WHERE {?x ?r ?y} LIMIT 2’)

-> ?Result]@\sparql.
Output :

?Result=

["http://www.openlinksw.com/virtrdf-data-formats#default-iid"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri]

?Result=

["http://www.openlinksw.com/virtrdf-data-formats#default-iid-nullable"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri]

Example:
?Subj="http://dbpedia.org/ontology/person"^^\iri,

Query[select(DBPEDIAConnectionID,

[’SELECT * WHERE {’, ?Subj, ’?r ?y} LIMIT 2’])

-> ?Result]@\sparql.
Note that this query passes the binding from the variable ?Subj into the query. It is
important to not confuse ERGO variables, like ?Subj, with SPARQL variables, like
?r and ?y, in the above query. From the ERGO perspective, ?Subj is a real logical
variable and its binding is substituted into the list that forms the query. Without
knowing anything about the actual SPARQL variables, ERGO nevertheless “magically”
successively binds the variable ?Result to the lists of pairs [r1, y1], [r2, y2], ..., [rk, yk],
where each ri, yi are the answers returned by SPARQL. In contrast, ?r and ?y are seen
by ERGO simply as sequences of characters that form the string ’?r ?y} LIMIT 2’

that becomes part of the query after the list is concatenated. In fact, ERGO does not
even look inside that string. From SPARQL perspective, on the other hand, ?r and
?y are real variables through which it passes the answers to the query. In contrast,
SPARQL does not see the ERGO variable ?Subj at all, as the binding for that variable
becomes part of the query list before the actual query is formed and sent to SPARQL
processor.

Portions Copyright c© 2013–2018 Coherent Knowledge 42

CHAPTER 6. QUERYING SPARQL ENDPOINTS

• Query[selectAll(?ConnectionId,?Query)->?ResultList]@\sparql
runs a SPARQL query, similarly to select, except that all results are returned at once
in the list ?ResultList. In contrast, the select query returns the results from the query
one-by-one. Since we do not pass any values from ERGO to the query, we represent the
query simply as an atom.
Example:
Query[selectAll(DBPEDIAConnectionID,’SELECT * WHERE {?x ?r ?y} LIMIT 2’)

-> ?ResultList]@\sparql.
Output :

?Result=

[["http://www.openlinksw.com/virtrdf-data-formats#default-iid"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri],

["http://www.openlinksw.com/virtrdf-data-formats#default-iid-nullable"^^\iri,

rdf#type,

"http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat"^^\iri]]

• Query[construct(?ConnectionId,?Query)->?Result]@\sparql
runs a SPARQL CONSTRUCT query. As before, ?Query must be bound either to an atom
(which must be a valid CONSTRUCT query) or to a list, which must concatenate into
such a valid query. The latter, again, is used to pass values to the query via variables.
The CONSTRUCT query is an alternative query to SELECT, that instead of returning
a table of results returns an RDF graph. The resulting RDF graph is created by taking
the results of the equivalent SELECT query and filling in the values of variables that
occur in the CONSTRUCT clause. The resulting graph (a list of triples) is then bound
to ?Result.
Example:
Query[construct(DBPEDIAConnectionID,’CONSTRUCT <http://example3.org/person>

?r ?y WHERE ?x ?r ?y LIMIT 2’)->?Res]@\sparql.

Note that the query refers to a URL constant <http://example3.org/person> using
the SPARQL syntax for URLs (angle brackets). This syntax differs from the syntax
for URLs in ERGO, which is "http://example3.org/person"ˆˆ\iri. Note that in
the second example for SELECT we passed an IRI to the query using the ERGO syn-
tax. ERGO IRIs are converted to SPARQL URLs automatically. However, in that
example, we could as well use an atom that represents the desired URL. For instance,
?Subj = ’<http://dbpedia.org/ontology/person>’.

• Query[ask(?ConnectionId,?Query)]@\sparql
runs a SPARQL ASK query. An ASK query tests whether or not a query pattern has
a solution. It does not return any results and simply succeeds or fails.
Example:
Query[ask(DBPEDIAConnectionID,’ASK {?x ?prop "Alice"}’)]@\sparql.
Output : ’Yes’ because DBpedia has a matching triple.

• Query[describe(?ConnectionId,?Query)->?Result]@\sparql
runs a SPARQL DESCRIBE query, which returns descriptions of RDF resources.

Portions Copyright c© 2013–2018 Coherent Knowledge 43

CHAPTER 6. QUERYING SPARQL ENDPOINTS

These descriptions are bound to ?Result.
Example:
Query[describe(DBPEDIAConnectionID,’DESCRIBE ?y WHERE {?x ?r ?y} LIMIT

1’)->?Result]@\sparql.

• Query[update(?ConnectionId,?Query)]@\sparql
runs update operations on connection ?ConnectionId, which must be bound to an
update endpoint. The operations are insert, delete, modify, load, and clear (described
in the standard: https://www.w3.org/TR/sparql11-update/). The update requires
an update-enabled RDF triple server (e.g., GraphDB, Jena TDB, Virtuoso Universal
Server).
Examples:
Query[update(ServerConnectionID,

’PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA { <http://example/john> dc:title "A new book" ;

dc:creator "A.N.Other" . }’)]@\sparql.
Query[update(ServerConnectionID,

’PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA { <http://example/john> dc:title "A new book" ;

dc:creator "A.N.Other" . }’)]@\sparql.

Here ServerConnectionID must be an endpoint that was previously open on an update
endpoint.

In addition, there are constructAll and describeAll queries, which are related to
construct and describe queries the same way selectAll is related to select: the variable
?Result gets bound to a list that contains all answers rather than one answer at a time.

Additional examples of queries to standard endpoints (e.g., DBpedia and Wikidata SPARQL
endpoints) are provided in Coherent’s ErgoAI Tutorial, in the section on ERGO connectors, at
https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/home/ergo-connectors.

6.3 Creating Your Own Triple Store

A number of public SPARQL endpoints, such as DBpedia, exist in order to play with SPARQL
queries. However, if one wants to modify triples in the store and create endpoints, a local
(or a cloud) installation is needed. In this section, we provide the instructions for two triple
stores: GraphDB fro Ontotext and Apache’s Jena TDB with Fuseki server.

6.3.1 GraphDB

We found that GraphDB from Ontotext (http://graphdb.ontotext.com/) is one of the eas-
iest to install, maintain, and experiment with. This is a commercial triple store, but by regis-
tering (http://info.ontotext.com/graphdb-free-ontotext one can obtain a free license,
which supports all major features of the product for small projects. To install GraphDB, use
the installation package appropriate for your system. Below are the instructions for Ubuntu
Linux (Mint Linux with Cinnamon, to be precise).

Portions Copyright c© 2013–2018 Coherent Knowledge 44

https://www.w3.org/TR/sparql11-update/
https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/home/ergo-connectors
http://graphdb.ontotext.com/
http://info.ontotext.com/graphdb-free-ontotext

CHAPTER 6. QUERYING SPARQL ENDPOINTS

After installing the graphdb-free-7.1.0.deb package (provided to you by Ontotext after
registering), you will find GraphDB in the Programming category in the Start menu. Choosing
GraphDB from the menu will open a console and a Firefox browser with a tab open on the
GraphDB workbench. If you don’t have Firefox installed, just head to localhost:7200 in
your favorite browser. The Workbench lets you create new triple stores (in the Admin menu),
put information into the store, and query it. Since we want to query our triple store using
ERGO, skip the query/update form: just use the Admin menu to create/administer your store.

Let’s suppose we created a triple store called Test. In response, GraphDB creates
two endpoints: http://localhost:7200/repositories/Test — a query endpoint and
http://localhost:7200/repositories/Test/statements — an update endpoint. By
opening an ERGO query connection to the former endpoint and an update connection to
the latter you will be able to use ERGO to manage your own triple store!

6.3.2 Jena TDB

Jena TDB from Apache is an open source triple store with full support for the SPARQL
1.1 protocol. To install it, visit http://jena.apache.org/download/#jena-fuseki and
download the latest Apache Jena Fuzeki. As of this writing, the latest release is
apache-jena-fuseki-2.4.0.zip (or you can choose a tar.gz file).

Unzip the above file in a desired directory (say, TDB), change to the directory
TDB/apache-jena-fuseki-2.4.0/ and type

fuseki-server --update --mem /test

(fuseki-server.bat on Windows). This will create an in-memory triple store called test.
Since it is an in-memory store, any data inserted into it will be deleted when the Fuseki
server terminates (kill it by typing Ctrl-C). In addition, Fuseki will create two SPARQL end-
points: a query endpoint at http://localhost:3030/test/query and an update endpoint
at http://localhost:3030/test/update. Use these endpoints to perform operations on
this triple store via ERGO.

To create a persistent triple store, you need to create a subdirectory in
TDB/apache-jena-fuseki-2.4.0/, say MyTestDB and then start the Fuseki server like
this:

fuseki-server --update --loc=MyTestDB /test

Note that MyTestDB is the name of the directory in which to store the data while
test is the name of the service. So, the SPARQL endpoints for this persistent store
would be the same as in the previous example: http://localhost:3030/test/query and
http://localhost:3030/test/update.

You can manage this and other triple stores on this server by heading to the Fuseki workbench
site at localhost:3030 in your favorite browser.

To protect the triple stores with a password, edit the file
TDB/apache-jena-fuseki-2.4.0/run/shiro.ini and add users under the [users]

section. For instance,

Portions Copyright c© 2013–2018 Coherent Knowledge 45

http://localhost:7200/repositories/Test
http://localhost:7200/repositories/Test/statements
http://jena.apache.org/download/#jena-fuseki
http://localhost:3030/test/query
http://localhost:3030/test/update
http://localhost:3030/test/query
http://localhost:3030/test/update
localhost:3030

CHAPTER 6. QUERYING SPARQL ENDPOINTS

[users]

its_me=its_my_pw

Portions Copyright c© 2013–2018 Coherent Knowledge 46

Chapter 7

Loading RDF and OWL files
by Paul Fodor and Michael Kifer

This chapter describes the ERGO import facility for RDF and OWL files. The Resource De-
scription Framework (RDF) and the Web Ontology Language (OWL) are families of knowl-
edge representation languages for authoring ontologies.

The ERGO-to-OWL API is available through the ERGO system module \owl and calling
anything @\owl will load that module. If, however, for some reason it is necessary to load
this module without executing any operations, one can accomplish this by calling

• ensure loaded@\owl.

7.1 Loading RDF and OWL Files

The main predicate for importing and loading RDF and OWL files into ERGO is rdf load:

System[rdf load(?InputFileName,?InputLangSyntax,?IriPrefixes,?RdfModule)]@\owl.

The parameters of this query are explained below. They are all input parameters and therefore
must be bound. The result of the translation is stored in an ERGO module indicated by the
last argument.

?InputFileName must be bound to an ERGO symbol (Prolog atom); it is an input file name
where the RDF or OWL file resides (this can be absolute or relative path). It is advisable
that the user uses forward slash as the delimiter for specifying path names. Backslash also
works, but it should be doubled, as backslashes need to be escaped.

Note: the input file name can be a URL in which case it should have the form url(the-web-
address). For example, url(’http://www.w3.org/TR/owl-guide/wine.rdf’). This feature
will work only if the host system has all the required software installed (like the curl package.
(Please refer to the installation instructions.)

?InputLangSyntax must be bound to an ERGO symbol (Prolog atom); it is an input file
syntax: ’RDF/XML’, ’JSON-LD’ ’TURTLE’, ’TTL’ , ’N-TRIPLES’, ’N-QUADS’, ’NT’, ’N3’,
or ’RDF/JSON’ (lowercase versions are also accepted).

47

CHAPTER 7. LOADING RDF AND OWL FILES

If ?InputLangSyntax is an empty atom ’’ then the input syntax is determined from the file
extension.1

?IriPrefixes must be bound to an ERGO symbol (Prolog atom) and be a sequence or rows,
ending with the newline character, where each row has the form prefix=URL:

’prefix1=URL

prefix2=URL2

...

prefixN-URL_N’

This parameter can be used to define prefixes for compact URIs (curi’s) used in-
side the input RDF/OWL files. These prefixes will be added to the stan-
dard pre-defined prefixes rdf (http://www.w3.org/1999/02/22-rdf-syntax-ns#), rdfs

(http://www.w3.org/2000/01/rdf-schema#), owl (http://www.w3.org/2002/07/owl#),
and xsd (http://www.w3.org/2001/XMLSchema#). If any of the standard prefixes rdf, rdfs,
owl, or xsd are also defined in ?IriPrefixes, the latter override the default definitions.

The last argument, ?RdfModule, must be bound to an ERGO symbol (Prolog atom); it in-
dicates the ERGO module into which the RDF imported triples should placed at run time.
These triples have the form ?Subject[?Property->?Object] and can be queried as follows:

?Subject[?Property->?Object]@MyRdfModule

where we assume that ?RdfModule is bound to MyRdfModule in this example.

A simplified version of the rdf load query. In most cases the user does not need to
use all the options provided by the rdf load method and the following query would suffice:

System[rdf load(?InputFileName, ?RdfModule)]@\owl

The input language syntax is determined from the file extension and no IRI prefixes are
expected to be supplied. In other words, a call like

System[rdf load(’wine.owl’, MyRdfModule)]@\owl

is equivalent to

System[rdf load(’wine.owl’,’’,’’,MyRdfModule)]@\owl

7.2 Other API Calls

Besides loading, the following API calls are supported:

• ?RdfModule[rdf insert(?S,?P,?O)]@\owl — insert ?S[?P->?O] into the RDF mod-
ule indicated by ?RdfModule.

1
.owl and .rdf for ’RDF/XML’, .nt for ’N-TRIPLES’ and ’NT’, .ttl for ’TTL’ and ’TURTLE’, .nq for

’N-QUADS’, .jsonld for ’JSON-LD’, .rj for ’RDF/JSON’, .n3 for ’N3’.

Portions Copyright c© 2013–2018 Coherent Knowledge 48

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#

CHAPTER 7. LOADING RDF AND OWL FILES

• ?RdfModule[rdf delete(?S,?P,?O)]@\owl — delete a fact that matches ?S[?P->?O]
from the RDF module indicated by ?RdfModule.

• ?RdfModule[rdf deleteall]@\owl — empty out the specified RDF module.

• ?Subject[rdf reachable(?RdfModule,?Property)->?Object]@\owl — true if
?Object is reachable from ?Subject via a path of properties ?Property. If the
property is specified simply as ? then any path will do. If ?Property is bound (say, to
foo) then only the paths consisting of the foo-edges will be considered. If ?Property
is an unbound variable then any path will do, if all edges of that path are the same.

• ?RdfModule[rdf predicate->?P]@\owl, ?RdfModule[rdf subject->?S]@\owl,
?RdfModule[rdf object->?O]@\owl — return the set of all properties, subjects, and
objects, respectively, in the RDF module ?RdfModule.

7.3 Importing Multiple RDF/OWL Files

Multiple RDF and OWL files can be loaded into separate ERGO modules (and the same file
can even be loaded into different modules, if so desired). However, what happens if two files
are loaded into the same module? For instance,

?- System[rdf_load(’wine.owl’, MyRdfModule)]@\owl,

System[rdf_load(’beer.owl’, MyRdfModule)]@\owl,

... do something

In that case, the data from the second import will be added to the data obtained from the
second import. If this additive behavior is not what is required in a particular situation and
one wants the second import to override the first, a call to rdf deleteall will do the trick:

?- System[rdf_load(’wine.owl’, MyRdfModule)]@\owl},

... do something

MyRdfModule[rdf_deleteall]@\owl, // erase the previously imported data

System[rdf_load(’beer.owl’, MyRdfModule)]@\owl},

... do something else

Portions Copyright c© 2013–2018 Coherent Knowledge 49

Chapter 8

Evidential Probabilistic Reasoning
in ERGO

by Theresa Swift

Evidential probability [2] is an approach to reasoning about probabilistic information that
may be approximate, incomplete, or even contradictory. Rather than providing a full calculus
for probabilistic deduction, evidential probability addresses the question of the probability of
whether a given object is a member of a given class. To support this, evidential probability
extends ERGO with statistical statements of the form

\pct(targC, refC, Low,High)

where targC, refC are ERGO classes, while Low and High are numbers between 0 and
1. Such a statement indicates that any given element of refC is an element of targC with
probability between Lower and Upper. For instance

\pct(stolen,redRacing,0.0084,0.0476).

could be used to indicate that the proportion of redRacing bicycles that are stolen in a given
town is between 0.0084 and 0.476. 1

In order to determine the probability of whether an individual o is in a class C (when o

cannot be proved for certain to be in C) statistical statements are used together with Ergo’s
class membership (: /2) and subclass (:: /2) statements. Information about the classes to
which o certainly belongs is extended with statistical information in the following manner. A
candidate set Cand is collected by examining each statistical \pct-statement S for which o is
known to be an element of the reference class of S and for which C is a subclass of the target
class of S. Namely,

Cand = {refC| \pct(targC, refC, Low,High), C :: targC, o ∈ refC}

Using this candidate set, a series of rules is used to derive a single interval representing the
probability that o ∈ targC.

1 In [2], a more general model is presented, which addresses the question of whether a given n-tuple of
domain elements is in the extension of a formula with n free variables.

50

CHAPTER 8. EVIDENTIAL PROBABILISTIC REASONING IN ERGO

As mentioned above, evidential probability is good for modelling situations where probabilis-
tic information may be missing or inconsistent. For instance, consider an individual Mary
in a given knowledge base. Mary might belong to a number of different classes: female,
mother-of-2, American, resident-of-Virginia, over-40, college-educated, weekend-painter, and
so on. To understand the likelihood that Mary would contract a given well-studied disease,
d, information for various epidemiological studies could be consulted. Some studies, such as
those restricted to male subjects, would not apply to Mary because she is not a member of
the reference class Man. On the other hand, some of the classes to which Mary belongs, such
as weekend painter, are also irrelevant to whether she will contact d — this time because
there would be no \pct-facts with weekend-painter as a reference class (presumably because
there would be no studies of the relationship between painting on weekends to the disease
in question). Of the studies that do pertain to Mary, some might be more relevant than
others. For instance, a study of the incidence of d for women over 35 would be more relevant
than a study of the general population because Mary belongs to the class over-40, which is
more specific than the class of all persons. At the same time, various studies that pertain
to Mary may conflict with one another. In general, we can’t expect there to be a perfect
study that considers all potential risk factors for Mary. Also, we can’t necessarily expect that
information from the relevant studies is entirely consistent, due to differences in experimen-
tal methods. Thus, evidential probability combines the relevant information, weighs some
information more heavily than other information, and resolves conflicts.

The Principles of Evidential Probability One means of weighing information is the
principle of specificity: a statement S1 may override statement S2 if 1) their associated inter-
vals conflict (one interval is not contained in the other); and 2) the reference class of S1 is
more specific to an object o1 than that of S2. A second principle is that of precision. Given
two intervals (L1, U1) and (L2, U2) where one interval is retained in the other, only the more
precise interval is contained. After repeatedly applying the principle of specificity, then of
precision, a final candidate set of intervals, Sfin is obtained. The final probability is taken to
be the smallest interval containing all intervals in Sfin.

Evidential probability is thus not a full probabilistic logic, but a meta-logic for defeasible
reasoning about statistical statements once non-probabilistic aspects of a model have been
derived. It is thus more specialized and less powerful than other types of probabilistic logics;
but it is efficient to compute, and applicable to situations where such logics don’t apply, due
to contradiction, incompleteness, or other factors. 2

Demonstration Example: Stolen Bikes

The file .../Ergo/ergo demos/evidential probability/bikes.ergo provides an example
of reasoning about evidential probability, and contains a subclass hierarchy along with a set
of statistical statements. To use evidential probability, first load the package into the module
ergo ep:

2Other prioritizations could also be considered, such as prioritizing more trusted information (say, infor-
mation from better experiments or studies). This type of priority is described in [2] as sharpening by richness,
but is not implemented here.

Portions Copyright c© 2013–2018 Coherent Knowledge 51

CHAPTER 8. EVIDENTIAL PROBABILISTIC REASONING IN ERGO

ergo> [evidential_probability >> ergo_ep].

then load the example

ergo> [’ergo_demos/evidential_probability/bikes’].

On Windows, use double-backslashes instead of forward slashes:

ergo> [’c:ergo_demos\\evidential_probability\\bikes’].

At this stage, queries can be made about evidential probability. The query:

ergo> \ep(stolen,redRacingImported,?L,?H)@ergo_ep.

should return ?L = 0,?U = 0.0454. We show in detail how these bounds bounds were derived.
The first step is to sharpen by specificity, i.e., to collect all of the relevant statistical statements
that pertain to redRacingImported, beginning with the most specific. There are no statistical
statements about stolen bicycles in the class redRacingImported, but there are statements
for its immediate superclasses redRacing, racingImported and redImported, all of which
form the current candidate set. Next, we check statistical statements for the immediate
superclasses of the candidate set, namely red, racing and imported. Consider first the
interval associated with red:[0.0084,0.0476]. This interval is considered to conflict with
that of e.g., redRacing: [0,0.0454] since neither interval is contained in the other. In this
case, the interval for red is overridden and not considered further. Similar considerations
override intervals for imported and bike. Thus, at the end of sharpening by specificity, the
candidate classes and their intervals are:

redRacing:[0,0.0454], racing:[0,0.0467], redImported:[0,0.0467],

racingImported:[0,0.0582].

The next step is to sharpen by precision, which throws out all candidate intervals that are
contained in other intervals. This step throws out all intervals except for that of redRacing:
[0,0.0454].

Portions Copyright c© 2013–2018 Coherent Knowledge 52

Chapter 9

Importing Tabular Data (.csv, .tsv,
etc., files)
by Michael Kifer

This chapter describes the ERGO API for importing tabular data from delimiter separated
values files (DSV).

A DSV file consists of rows of values that are separated by a separator. This is the standard
format for exporting tabular data from spreadsheets and other formats. Usually the separator
is either a comma or a tab, but could be another character or a sequence of characters. If
a field contains spaces, commas, or some other spacial characters, the field is enclosed in
delimiters. The default is a double quote, e.g., "a,b| c", but can be changed.

9.1 API for Loading and Saving Tabular Data

First, the DSV package (e2dsv) must be loaded into an ERGO module, say dsv. One can
choose a different name, say mydata, but then @dsv in the examples below would need to be
changed to @mydata.

?- [e2dsv>>dsv]. // load the e2dsv package

After that, the following predicates become available in the module dsv:

• dsv load(?Infile,?Spec,?Format)@dsv: The rows of the DSV file, say ’example.csv’,
will be loaded into the predicate specified by ?Spec. The form of this specification is
described below. ?Format indicates the format of the input file: csv, tsv, psv, or
something else, as described below.

• dsv save(?Infile,?Spec,?OutFile,?Format)@dsv: The rows from the CVS Infile are con-
verted into the ERGO format (according to Spec, which is the same as in dsv load) and
then saved in OutFile. ?Format is the same as in dsv load — see below.

53

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

In the above, ?Infile is either an atom representing a local file name or has
the form url(WebDocAddress), where WebDocAddress must be an atom (e.g.,
url(’http:foo.com/bar’)). The Web page should not be protected by passwords or SSL.
Also, CSV/DSV files produced in the old format of Mac Classic are not supported.

The import specification, ?Spec, in the above calls can have several forms:

• predname/arity : The rows are imported and the predicate predname/arity is populated
with them. The arity piece must equal the number of columns in the typical row of
the DSV file. If the DSV file has longer lines, the extra columns will be ignored and
warnings will be issued. If the file has shorter lines than the arity, the extra arguments
in predname will be padded with null values \@?. All values are imported as general
ERGO constant symbols (Prolog atoms).

• predname(ArgSpec1, ..., ArgSpecN): In this form, the user can indicate how the values in
the DSV file should be converted. The previous form of Spec was importing everything
as Prolog atoms, but if the items in the imported spreadsheet are numbers, dates,
currencies, etc., then this is not very satisfactory. The possible values for an ArgSpec
are:

– atom or ?: the corresponding items from the DSV file are converted into Prolog
atoms.

– integer: the corresponding spreadsheet items are converted into integers. If an
item cannot be converted into an integer, a warning is issued and the item is
converted into an atom. The warning does not abort the computation and is only
intended to alert the user.

– float: the corresponding items from the DSV file are converted into floating
point/decimal numbers. If an item cannot be converted into a floating point num-
ber, a warning is issued and the value is converted into an atom. Again, the
warning is intended to merely alert the user.

– string: the corresponding items from the DSV file are converted into lists of
characters.

– date: the corresponding items in the DSV file are expected to be in the canonical
lexical form for \date literals in ERGO (i.e., YYY-MM-DD; e.g., 2017-11-26). They
are then converted into proper \date constants (i.e., into "2017-11-26"ˆˆ\date).

– time: the corresponding items from the spreadsheet are expected to be in the
canonical lexical form for a \time literal (HH:MM:SS or HH:MM:SS.XXXX). They are
converted to proper ERGO \time constants.

– dateTime: the corresponding items from the spreadsheet are expected to be in the
canonical lexical form for a \dateTime literal (e.g., 2017-12-03T09:23:01). They
are converted to proper ERGO \dateTime constants. See the section Primitive
Data Types in the ERGO Reasoner’s User Manual for the details of the \dateTime
type.

– duration: the corresponding items from the DSV file are expected to be in the
canonical lexical form for a \duration literal (e.g., P22Y2M10DT1H2M3S). They are
converted to proper ERGO \duration constants. See the section Primitive Data
Types in the ERGO Reasoner’s User Manual for the details of the \duration type.

Portions Copyright c© 2013–2018 Coherent Knowledge 54

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

– currency: the corresponding items from the DSV file are expected to be in the
canonical lexical form for a \currency literal (e.g., USD 20,666.55). These items
are converted to proper ERGO \currency constants. See the section Primitive
Data Types in the ERGO Reasoner’s User Manual for the details of the \currency
type.

– currency(Unit): where Unit is a currency unit like USD, GBP, EUR, etc. In
this case, the corresponding items in the spreadsheet are assumed to be numbers
(integer, decimal, float), which are then converted into ERGO \currency constants
with Unit as the currency unit.

– term: the corresponding items in the spreadsheet are expected to have the form
of a canonical Prolog term. They are converted to Prolog terms. If an item does
not parse as a term, an atom is returned with a warning.

– hilog: the items must have the form of a canonical Prolog term, and they are
converted to the corresponding HiLog terms. If an item does not parse as a term,
an atom is returned with a warning.

Note: p/3 is equivalent to the specification p(atom,atom,atom) or p(?,?,?).

• predname, where predname is an atom. In this case, a unary predicate predname is
populated from the spreadsheet. The predicate will contain lists of values corresponding
to each row. The values are all imported as atoms.

This option is useful when rows are irregular and have different sizes, so it will avoid
truncation or padding of the rows during the input.

The argument ?Format used in the above calls can be either

• csv — for comma-separated files

• tsv — for tab-separated files

• psv — for |-separated files

• ...+titles — ignore the first line in file (assumed to be the column header). The ...
part here must be csv, psv, or tsv.

• ...+titles(N) — like ...+titles except that N ≥ 0 first lines in the tabular file will
be ignored.

• ...+pad(N) — pad each line in the input file with N variables (if N > 0) or cut N

columns from each line (if N < 0). The ... part here stands for any of the earlier listed
combinations.

• ...+error — normally, if problems are encountered (such as the inability to convert to
integer or float, wrong line length, etc.), a warning is issued. This option forces errors
instead of warnings. Once an error is thrown, the loading stops. As before, the ... part
represents any of the earlier listed combinations.

• or it can be a list of options, each having one of these forms:

Portions Copyright c© 2013–2018 Coherent Knowledge 55

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

– separator="chars"ˆˆ\charlist; the default is ","ˆˆ\charlist. This is the sep-
arator between the fields.

– delimiter="chars"ˆˆ\charlist; the default is "\""ˆˆ\charlist. This is the
field delimiter for the fields that contain special characters like commas, spaces,
etc. This option is used only if some fields contain double quotes and so the default
delimiter will not work.

– titles or titles(N) — tells to skip the first line—or N >= 0 lines—in the input
file, which are assumed to be the header that contains column names or some other
non-tabular information.

– pad(N) — pad each line with N variables (if N > 0) or cut N columns from each
line (if N < 0). If line length does not match the number of arguments specified in
the Format argument then an error or warning is issued. This option helps avoid
this.

– error — if conversion problems, wrong line length, or similar issues are found,
warnings are given. With the error option, a stricter policy is assumed and errors
are issued instead. If an error is issued, loading of the data stops immediately.

Here is an example of a use of a complex options list, where salary.dsv is assumed to
be a spreadsheet in which fields are separated with the pair of characters \>:

?- dsv_load(’salary.dsv’,q,[separator="\\>"^^\charlist, titles(3)])@dsv.

To query the predicate that is created as a result of the import, the following must be taken
into account:

• The predicate must be queried using the idiom predname(...)@module, where module
is the module into which e2dsv was loaded (dsv in our example). The number of the
arguments must match the specification Spec—see above. For instance, as a result of
the above dsv load command, the predicate q/1 will be created, and the imported data
should be queried as

?- q(?X)@dsv.

• The previous contents of the aforesaid predicate predname(...)@module will
be wiped out when the DSV data is loaded into that predicate.

• For efficiency, the aforesaid predicate predname(...)@module is created in a special way
as a Prolog predicate, not as a HiLog predicate. This implies that a HiLog query (HiLog
due to a variable in the predicate position) such as

?- ?pred(?X)@dsv.

will not bind ?pred to q in our example and the imported tabular data cannot be
queried this way: the desired predicate name (i.e., q here) must be named explicitly.

• If the aforesaid predicate predname(...)@module is queried from within a file (e.g., ap-
pears in the body of a rule in a file) rather than from the command line in the ERGO

shell, it must be declared there as

Portions Copyright c© 2013–2018 Coherent Knowledge 56

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

:- prolog{predname/arity}.

because, as explained above, the predicate in question is special.

For instance, if the DSV file example.csv has the form

Name,Age,Parent

Bob,13,Mary

Bill,23

and we import it as follows:

?- [e2dsv>>dsv].

?- dsv_load(’example.csv’,p/3,csv)@dsv.

then the following facts will be added to p:

?- p(?X,?Y,?Z)@dsv.

?X = Bill

?Y = ’13’

?Z = ?

?X = Bob

?Y = ’13’

?Z = Mary

?X = Name

?Y = Age

?Z = Parents

A warning will be issued regarding Row 3 because it has only two items, while p has three
arguments.

?- dsv_load(’example.csv’,q,csv)@dsv. // the spec is just an atom

?- q(?X)@dsv.

?X = [Bill,’13’]

?X = [Bob,’13’,Mary]

?X = [Name,Age,Parents]

No warnings will be issued in this case.

If the specification of the output predicate were

?- dsv_load(’example.csv’,p(?,integer,?),csv)@dsv.

Portions Copyright c© 2013–2018 Coherent Knowledge 57

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

then the query p(?X,?Y,?Z)@dsv would return the result similar to the first example, but
’13’ would be 13 because the numbers in the second column would be imported as numbers
rather than atoms. There will be a warning that Age in the first row cannot be converted
into a number and also a warning concerning the shorter last line in the DSV file.

More examples of dealing with spreadsheets can be found
in the ERGO Examples Bank (see Importing tabular data)
https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/example-bank-of-advanced-

9.2 Loading Multiple Spreadsheets into the Same Module

This package allows one to load multiple spreadsheets into the same ERGO module at the
same time, but then the predicates into which these spreadsheets are loaded must be different
(either the name or the arity must differ). For instance, suppose we have example1.csv and
example2.psv, both containing tables with only two fields. Then

?- [e2dsv>>dsv].

?- dsv_load(’example1.csv’,p/2,csv)@dsv,

dsv_load(’example2.psv’,q/2,psv)@dsv.

will load the first spreadsheet into the predicate p(?X,?Y)@dsv and the second into
q(?X,?Y)@dsv. Both spreadsheets will be queriable via these respective predicates. In con-
trast, if the chosen predicates are the same, as in

?- dsv_load(’example1.csv’,p/2,csv)@dsv,

dsv_load(’example2.psv’,p/2,psv)@dsv.

then example1.csv will first be loaded into p(?X,?Y)@dsv and then this will be immedi-
ately overwritten by the contents of example2.psv. As a result, only the data in the sec-
ond spreadsheet will be accessible through p(?X,?Y)@dsv, and nothing will be loaded into
q(?X,?Y)@dsv.

Note: the command [e2dsv>>datamodule] should be executed only once per target module,
i.e., regardless of how many spreadsheets are loaded into datamodule (datamodule=dsv in our
examples).

9.3 Accessing Tabular Data via Frames

The previous discussion centered around accessing spreadsheet data via predicates, but this
is not always convenient. Tabular data often has rows composed of dozens of columns and
useful columns may be interspersed with those of no interest. For instance, if the first two
columns are of interest, the next 20 are of no interest, and columns 23, 24 are again of interest,
the method discussed so far would force us to access the data via a predicate that has 24
arguments—a serious inconvenience. The frame-based access method solves this problem, as
it lets one query the data using the frames of the form

?rowId[arg(argNumber) -> ?Value]@dsv

Portions Copyright c© 2013–2018 Coherent Knowledge 58

https://sites.google.com/a/coherentknowledge.com/ergo-suite-tutorial/example-bank-of-advanced-uses

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

For instance, in case we only want to see columns 1, 2, 23, 24, we can ask this query:

?- ?[arg(1)->?V1, arg(2)->?V2, arg(23)->?V23, arg(24)->?V24]@dsv.

So long as one is dealing with just one spreadsheet in the data module \dsv, the form of the
object Id of the frame is of no importance, so in the above example we simply used the don’t
care variable ?. If, however, one loads more than one spreadsheet into the same module,
it often becomes necessary to query a particular spreadsheet instead of all of them at once.
When access to the tabular data is done via predicates, this is not a issue—one simply uses
the desired predicate to focus the query to that predicate. In case of the frame access, this
is done by restricting the form of the object Id of the frame. The general form of such an
object Id is

\e2dsv(PredName,PredArity,RowId)

What is RowId? The RowId field used in the above object Id specification is used to make
sure the OIDs of different rows in spreadsheets imported into ERGO are distinct. It can be
generated automatically or a user-supplied primary key can be used.

By default, RowId is generated automatically by ERGO; it is not the same as the line number
in a spreadsheet. The user does not usually deal with that component. Alternatively, the
user can specify primary key information by calling the predicate

?- add_key_info(PredName,PredArity,KeyPositionsList)@dsv.

For instance, if we are importing data into a 30-ary predicate foo that has a natu-
ral primary key consisting for a pair of arguments in positions 2 and 4 then calling
add key info(foo,30,[2,4])@dsv (in advance) will cause RowId to look like this: (2nd-
arg-in-foo,4th-arg-in-foo); the overall object Id will then look like this:

\e2dsv(foo,30,(2nd-arg-in-foo,4th-arg-in-foo)) //note: (...) around key columns

When primary keys are used, the user is likely to deal with RowIds directly, as these would
be meaningful values.

The predicate name and the arity in the above object Ids are there in order to distinguish
objects that came from different tables/spreadsheets. They can be used to focus queries so
that they would retrieve the rows of a particular spreadsheet. Here PredName and PredArity
are the same as what was used as part of the ?Spec argument to dsv load on page 53. For
instance, suppose that two sheets were loaded into the module dsv: one into the predicate
foo/30 and the other into bar/55 (i.e., foo has 30 arguments and bar 55), and suppose we
want to use frames to query foo/30 and to extract columns 1, 2, 23, and 24. One can do this
using the following frame query:

?- \e2dsv(foo,30,?)[arg(1)->?V1,arg(2)->?V2,arg(23)->?V23,arg(24)->?V24]@dsv.

Note that we used ? in the RowId argument of the above object Id expression, as we assume
here that the user does not want this information. However, one can also put a normal
variable there, if desired.

Portions Copyright c© 2013–2018 Coherent Knowledge 59

CHAPTER 9. IMPORTING TABULAR DATA (DSV, TSV, ETC.)

9.3.1 Accessing via Frames and Meta Data

The frame-based interface to tabular data that was just described requires one to use column
numbers, and this is often inconvenient and error-prone. In many cases, tabular data comes
with each column having a name, and it might be desirable to be able to access the data via
the column names rather than numbers. Fortunately, this is easy to achieve as follows.

1. Suppose we are importing tabular data that has three columns, where the first is named
Id, the second Name, and the third Age. Create a file, say metainfo.ergo, with infor-
mation like this:

:- export{column_name(?,?)}.

column_name(Id,1).

column_name(Name,2).

column_name(Age,3).

The reason for the export statement is that the next step adds this information to
the module dsv into which we previously loaded the package e2dsv. That package is
encapsulated and only the explicitly exported predicates and frames can be accessed
from other modules. We will see in Step 3 that indeed column name is accessed from
another module (main), and this is why it needs to be exported.

2. Add this information to the module that contains the imported tabular data (dsv in
our example):

?- [+metainfo>>dsv]. // or add{metainfo>>dsv}.

3. Insert the bridge rule

?rowId[?property->?val] :-

(

column_name(?property,?colNum),

?rowId[arg(?colNum)->?val]

)@dsv.

into the module(s) from where you intend to access the tabular data.

For instance, if one inserts the above bridge rule into module main then, in that module, one
can ask queries such as

?- ?[Id->?i,Age->?a].

Portions Copyright c© 2013–2018 Coherent Knowledge 60

Chapter 10

Importing and Exporting JSON
Structures
by Michael Kifer

JSON is a popular notation for representing data. JSON is defined by the ECMA-404 stan-
dard, which can be found at http://www.json.org/. This chapter describes the ERGO

facility for importing JSON structures called values; it is based on an open source parser
called Parson https://github.com/kgabis/parson.

10.1 Introduction

In brief, a JSON structure is a value is an object, an array, a string, a number, true, false,
or null. An array is an expression of the form [value1, ..., valuen]; an object has a form
{ string1 : value1, ..., stringn : valuen }; strings are enclosed in double quotes and
are called the keys of the object; numbers have the usual syntax, and true, false, and null

are constants as written. Here are examples of relatively simple JSON values:

{

"first": "John",

"last": "Doe",

"age": 25

}

[1, 2, {"one" : 1.1, "two": 2.22}, null]

123

and here is a more complex example where values are nested to the depth of five:

{

"status": "ok",

61

http://www.json.org/
https://github.com/kgabis/parson

CHAPTER 10. IMPORTING JSON STRUCTURES

"results": [{"recordings": [{"id": "12345"}],

"score": 0.789,

"id": "9876"

}]

}

Although not part of the standard, it is quite common to see JSON structures that contains
comments like in C, Java, etc. The multiline comments have the form /* ... */ and the
here-to-end-of-line comments start with the //. ERGO ignores such comments.

The standard recommends, but does not require that the keys in an object do not have
duplicates (at the same level of nesting). Thus, for instance,

{"a":1, "b":2, "b":3}

is allowed, but discouraged. By default, the ERGO parser does not allow duplicate keys and
considers such objects as ill-formed. However, it also provides a way to set an option to allow
duplicate keys.

10.2 API for Importing JSON as Terms

When ERGO ingests a JSON structure, it represents it as a term as follows:

• Arrays are represented as lists.

• Strings are represented as ERGO symbols (Prolog atoms).

• Numbers are represented as such.

• true, false, null are represented as the Prolog (not HiLog!) terms of the form true(),
false(), and ’NULL’(?) (the latter is the internal representation of the ERGO quasi-
constant \@?).

• Finally, an object of the form { str1:val1,...,strn:valn} is represented as
json([str′

1
=val′

1
,...,str′n=val

′

n]), where str′i is the atom corresponding to the string
stri and val′i is the ERGO representation of the JSON value vali. Here, as above, json
is a unary Prolog, not HiLog, function symbol.

For instance, the above examples would be represented as HiLog ERGO terms as follows:

json([first = John, last = Doe, age = 25])

[1, 2, json([one = 1.1000, two = 2.2200]), \@?]

123

json([status = ok,

results = [json([recordings = [json([id = ’12345’])],

score = 0.7890,

id = ’9876’]

)]

])

Portions Copyright c© 2013–2018 Coherent Knowledge 62

CHAPTER 10. IMPORTING JSON STRUCTURES

where we tried to pretty-print the last result so it would be easier to relate to the original
(which was also pretty-printed).

ERGO provides the following methods for importing JSON:

• Source [parse -> ?Result]@\json
Here Source can have one of these forms

– string(Atom)

– str(Atom)

– url(Atom)

– file(Atom)

– Atom

– a variable

The forms string(Atom) and str(Atom) must supply an atom whose content is a
JSON structure and Result will then be bound to the ERGO representation of that
structure. The form url(Atom) can be used to ask ERGO to get a JSON document
from the Web. In that case, Atom must be a URL. The forms file(Atom) and Atom
interpret Atom as a file name and will read the JSON structure from there. The last
form, when the source is a variable, assumes that the JSON structure will come from
the standard input. The user will have to send the end-of-file signal (Ctrl-D in Linux or
Mac; Ctrl-Z in Windows) in order to tell the when the entire term has been entered.1 If
the input JSON structure contains a syntax error or some other problem is encountered
(e.g., not enough memory) then the above predicate will fail and a warning indicating
the reason will be printed to the standard output.

?Result can be a variable or any other term. If ?Result has the form pretty(?Var)
then ?Var will get bound to a pretty-printed string representation of the in-
put JSON structure. If ?Result has any other form (typically a variable) then
the input is converted into an ERGO term as explained above. For instance,
the query string(’{"abc":1, "cde":2}’)[parse->?X]@\json will bind ?X to the
ERGO HiLog term json([abc=1,cde=2]) while the query string(’{"abc":1,
"cde":2}’)[parse->pretty(?X)]@\json will bind ?X to the atom

’{

"abc": 1,

"cde": 2

}’

which is a pretty-printed copy of the input JSON string.

• Source [parse(Selector) -> ?Result]@\json
The meaning of Source and Result parameters here are the same as before. The Selector
parameter must be a path expression of the form “string1.string2.string3” (with one or

1 Sending the end-of-file signal is not possible in the ERGO Studio Listener, so this last option is not
available through the studio.

Portions Copyright c© 2013–2018 Coherent Knowledge 63

CHAPTER 10. IMPORTING JSON STRUCTURES

more components) that allows one to select the first sub-object of a bigger JSON object
and return its representation. Note, the first argument must supply an object, not an
array or some other type of value. For instance, if the input is

{ "first":1, "second":{"third":[1,2], "fourth":{"fifth":3}} }

then the query ?[parse(first) -> ?X]@\json will bind ?X to 1 while
?[parse(’second.fourth’) -> ?X]@\json will bind it to json([fifth = 3]).

Note that the selector lets one navigate through subobjects and not through arrays. If
an array is encountered in the middle, the query will fail. For instance, if the input is

{ "first":1, "second":[{"third":[1,2], "fourth":{"fifth":3}}] }

then the query ?[parse(’second.fourth’) -> ?X]@\json will fail and ?X will not be
bound to anything because the selector "second" points to an array and the selector
"fourth" cannot penetrate it.

Also note that if the JSON structure has more than one sub-object that satisfies the
selection and duplicate keys are allowed (e.g., in {"a":1, "a":2} both 1 and 2 satisfy
the selection) then only the first sub-object will be returned. (See below to learn about
duplicate keys in JSON.)

• set option(option =value)@\json
This sets options for parsing JSON for all the subsequent calls to the \json module.
Currently, only the following is supported:

duplicate_keys=true

duplicate_keys=false

As explained earlier, the default is that duplicate keys in JSON objects are treated as
syntax errors. The first of the above options tells the parser to allow the duplicates.
The second option restores the default.

Here is a more complex example, which uses the JSON parser to process the result of a search
of Google’s Knowledge Graph to see what it knows about Benjamin Grosof. To make the
output a bit more manageable, we are only asking to get the JSON subobject rooted at the
property itemListElement. The Knowledge Graph itself is queried using XSB’s curl library.

?- load_page(url(’https://kgsearch.googleapis.com/v1/entities:search?query=benjamin_grosof&key

[secure(false)], ?, ?_SearchResult, ?)@\plgall(curl),
str(?_SearchResult)[parse(itemListElement) -> ?Answer]@\json.

The answer to this query is

?Answer = [json([’@type’ = EntitySearchResult,

result = json([’@id’ = ’kg:/m/09pb9y8’,

name = ’Benjamin Nathan Grosof’,

’@type’ = [Person, Thing],

description = Mathematician]),

resultScore = 19.3944])]

Portions Copyright c© 2013–2018 Coherent Knowledge 64

https://kgsearch.googleapis.com/v1/entities:search?query= benjamin_grosof&key=AIzaSyAaMs1AEkgRGAs_hkcULQLJ5NKrEOzyOB0&limit=1

CHAPTER 10. IMPORTING JSON STRUCTURES

The same can actually be obtained in a much simpler way using the url feature for the JSON
source, as described above:

?- url(’https://kgsearch.googleapis.com/v1/entities:search?query=benjamin_grosof&key=AIzaSyAaM

parse(itemListElement) -> ?Answer

@\json.

However, at present the url(...) feature works only for documents that are not protected
by passwords or SSL.

10.3 API for Importing JSON as Facts

The API for importing JSON as terms is useful if one needs to traverse the imported JSON
tree structure and process it in some complex way. However, in knowledge interchange, JSON
is often used to exchange facts about enterprises being modeled by the different knowledge
base. For instance, the native representation in Wikidata and MongoDB is JSON and to get
the Wikidata or the MongoDB facts into ERGO we would want to represent the information
as queriable facts. Fortunately, converting JSON into ERGO facts is easy because the former
is mappable 1-1 to ERGO frames. For instance, the following JSON

{"kind": "person", "fullName": "John Doe", "age": 22, "gender": "Male",

"child": {{"fullName":"Bob Doe", "age":1}, // embedded JSON objects

{"fullName":"Alice Doe", "age":3}},

"citiesLived": [{ "place":"Boston", "numberOfYears":5}, // JSON objects

{"place":"Rome", "numberOfYears":6}]} // embedded in list

translates into this:

\#[kind->person, fullName->’John Doe’, age->22, gender->Male,

child->{\#[fullName->’Bob Doe’, age->1],

\#[fullName->’Alice Doe’, age->3]},

citiesLived->[\#[place->Boston, numberOfYears->5],

\#[place->Rome, numberOfYears->6]]

].

The principle of this translation should be obvious from the above example except that frames
are not allowed inside lists, and so

[\#[place->Boston,numberOfYears->5], \#[place->Rome,numberOfYears->6]]

is not a valid ERGO syntax. However, this problem is side-stepped by converting lists with
embedded frames, such as above, into plain lists augmented with additional frame-facts. For
instance, the above offending list is represented as

[newObjId1, newObjId2] // complex list became plain list

Portions Copyright c© 2013–2018 Coherent Knowledge 65

https://kgsearch.googleapis.com/v1/entities:search?query=benjamin_grosof&key=AIzaSyAaMs1AEkgRGAs_hkcULQLJ5NKrEOzyOB0&limit=1

CHAPTER 10. IMPORTING JSON STRUCTURES

where newObjId1 and newObjId2 are newly invented constants that do not appear anywhere
else. In addition, the following facts are added:

newObjId1[place->Boston,numberOfYears->5]. // these are the facts that were

newObjId2[place->Rome,numberOfYears->6]. // embedded in the above list

Thus, the actual translation of the JSON structure in question is

\#[kind->person, fullName->’John Doe’, age->22, gender->Male,

child->{\#[fullName->’Bob Doe’, age->1],

\#[fullName->’Alice Doe’, age->3]},

citiesLived->[newObjId1, newObjId2] // list no longer has embedded frames

].

newObjId1[place->Boston, numberOfYears->5]. // frames formerly

newObjId2[place->Rome, numberOfYears->6]. // embedded in a list

Conversion of JSON structures into facts is done by the following API calls:

• ?Src[parse2memory(?Mod)]@\json: The meaning of ?Src is as before. This API call
takes the input JSON structure, which must be a JSON object (and not a list, number,
etc.) and inserts facts, as explained above, into the ERGO module ?Mod.

• ?Src[parse2memory(?Mod,?Selector)]@\json: Like the previous call but also takes
the selector argument whose meaning is as in the case of the term-based JSON import.

• ?Src[parse2file(?File)@\json]: This is similar to parsing to memory, but the facts
are instead written to the specified file. If the file already exists, it is erased first. The
file can then be loaded or added into some ERGO module (adding is recommended).

• ?Src[parse2file(?File,?Selector)@\json]: Like the previous case, but also takes
the selector argument.

Only JSON objects (i.e., {...} - structures, not standalone constants or lists) can be converted
to facts.

Conversion to facts involves creation of a root ERGO object that represents the entire JSON
structure. This object then points to other objects that represent the various components of
that structure, etc. The Id of the root object can be obtained via the query

?- ?Module[json_root->?Oid]@\json.

Here ?Module is the module into which the JSON object is dumped by theparse2memory
method or into which the file of facts is loaded when parse2file is used. If more than one
JSON object is dumped into the same module, the above query will return multiple answers—
one for each JSON structure dumped into the module. One can “forget” the root-level oids
using this API call:

?- ?Module[forget_roots]@\json.

Portions Copyright c© 2013–2018 Coherent Knowledge 66

CHAPTER 10. IMPORTING JSON STRUCTURES

This is useful in situations when one is done processing a previous JSON structure and needs
to traverse a newly-dumped structure into the same module. However, the most common
way of working with JSON is when modules hold just one JSON structure at a time, and
erasemodule{...} is used before another JSON structure is dumped into the same module.

10.4 Exporting to JSON

ERGO provides API for exporting HiLog terms as well as objects to JSON.

10.4.1 Exporting HiLog Terms to JSON

The case of terms is simple: a term is represented simply as a JSON object with two features:
functor and arguments. The functor is also a term so it is futher converted according to the
same rules. The arguments part is a list of terms and the latter are converted recursively by
the same rule. For instance,

ergo> p(o)(${a(9)},b,?L,[pp(ii),2,3,?L])[term2json -> ?J]@\json.

?J = ’{"functor":{"functor":"p","arguments":["o"]}

"arguments":[{"predicate":"a","module":"main","arguments":[9]},

"b",

{"variable":"h0"},

[{"functor":"pp","arguments":["ii"]},

2,

3,

{"variable":"h0"}]]}’

ergo> foo(a,b,bar(c,d))[term2json->?J]@\json.

?J = ’{"functor":"foo",

"arguments":["a","b",{"functor":"bar","arguments":["c","d"]}]}’

ergo> [a,b,bar(c,d)][term2json->?J]@\json.

?J = ’["a","b",{"functor":"bar","arguments":["c","d"]}]’

ergo> (a,b,bar(c,d))[term2json->?J]@\json.

?J = ’{"commalist":"["a","b",{"functor":"bar","arguments":["c","d"]}]"}’

Note that a term can be a reified predicate in which case the "predicate" feature name is
used instead of "functor". Also, a variable is translated into a JSON object of the form
{"variable": "varname"}. Since variable names in a logic formula are immaterial and all
that matters is whether two variables are the same or not, only internal names are shown.
In the above example, the two occurrences of ?X are shown as "h0". Frame and subclass/isa
formulas are also supported, but not aggregate functions. To see whether a particular form of
a reified formula is supported and how it is represented in JSON, use the JSON API method
term2json, as shown above. The general form of that method is given below:

Portions Copyright c© 2013–2018 Coherent Knowledge 67

CHAPTER 10. IMPORTING JSON STRUCTURES

• ?Term[term2json -> ?Json]@\json — convert HiLog term ?Term into a JSON ex-
pression. The result is an atom (an ERGO symbol) that contains the JSON expression.
Such an atom can be sent to a JSON-aware external application.

10.4.2 Exporting ERGO Objects to JSON

This API takes a HiLog term that is interpreted as an object Id and returns the JSON
encoding of all the immediate superclasses of that object and all the properties of that object.
The input object can be in the current module or in some other module. Furthermore, the
API can take conditions that would filter out the properties of the object that we are looking
for as well as eliminate the descendant object that we don’t want to see in the JSON encoding.
The idea of the encoding can best be understood via examples.

The first example gives a JSON encoding for the object kati from the family obj.flr demo
located in the demos/ folder in the ERGO distribution. First, we need to load this demo
via the command demo{family obj}. To get the JSON encoding, we use the object2json

method and then pretty-print the result as explained previously. That is,

?- demo{family_obj},

set_option(duplicate_keys=true)@\json,

kati[object2json -> ?Json]@\json,

string(?Json)[parse->pretty(?Res)]@\json,

writeln(?Res)@\io.

{

"\\self": "kati",

"\\isa": [

"female"

],

"ancestor": "hermann",

"ancestor": "johanna",

"ancestor": "rita",

"ancestor": "wilhelm",

"brother": "bernhard",

"brother": "karl",

"daughter": "eva",

"father": "hermann",

"mother": "johanna",

"parent": "hermann",

"parent": "johanna",

"sister_in_law": "christina",

"uncle": "franz",

"uncle": "heinz"

}

Note that we set the duplicate keys=true option because in the family obj demo most
of the properties (like ancestor) are multi-valued, which leads to repeated keys in JSON

Portions Copyright c© 2013–2018 Coherent Knowledge 68

CHAPTER 10. IMPORTING JSON STRUCTURES

representation. As we noted, this is allowed, but some applications do not support
such JSON expressions. If one needs to talk to such applications, simply don’t set the
duplicate keys=true option and the above will represent duplicate JSON keys using lists.
For instance, "ancestor":["hermann","johanna","rita","wilhelm"]. Note, however,
that without the duplicate keys option the JSON encoding becomes lossy, since we no
longer can tell whether the original ERGO attribute ancestor was multivalued (with each
single value being a string) or it was single-valued and the value was an ordered list.

Here we also note that the use of JSON API can often be simpler if one recalls the very useful
syntax of path expressions. For instance, the 3d and 4th lines in the above query can be
written much more shortly as

string(kati.object2json)[parse->pretty(?Res)]@\json

If we try to encode the class female we get the following:

string(kati.object2json)[parse->pretty(?Res)]@\json, writeln(?Res)@\io.

{

"\\self": "female",

"\\sub": [

"person"

],

"type": "gender"

}

Note that in ERGO properties can be HiLog terms and so they cannot be encoded simply as
a string like "parent". For instance,

?- insert{{a,b}:{c,d},d::k, k[|eee(123)->kkk|]}.

?- a[object2json -> ?Json]@\json,

string(?Json)[parse->pretty(?Res)]@\json,

writeln(?Res)@\io.

{

"\\self": "a",

"\\isa": [

"c",

"d"

],

"\\keyval": [

{

"functor": "eee",

"arguments": [

123

]

},

[

"kkk"

Portions Copyright c© 2013–2018 Coherent Knowledge 69

CHAPTER 10. IMPORTING JSON STRUCTURES

]

]

}

Note that eee(123) -> kkk is a complex property that object a inherits from class k. It is
encoded as a JSON keypair "\\keyval" : list where the first element of list is the encoding
of eee(123) and the second of "kkk".

Now we are ready to present the different versions of the object2json method.

• ?Obj[object2json -> ?Json]@\json — take an object and return a Prolog atom that
contains a JSON representation of the object’s immediate superclasses and properties
with respect to the ERGO module where this call is made.

• ?Obj[object2json(?Module) -> ?Json]@\json — as above, but the properties and
the superclasses of ?Obj are taken from the module ?Module.

• ?Obj[object2json(?Mod)(?keyFilter,?valFilter,?classFilter)->?Json]@\json
— this version lets one to not only specify the module but also impose conditions on
the properties of ?Obj, on the superclasses, and on the property values that we want
to see in the JSON representation. In the above, (?Mod) can be omitted and the
current module will be used then. A null (or any other constant) condition means “no
filtering for that type of argument.” Otherwise, the filters must be unary predicates or
primitives. In the example below we use unary primitives isnumber{?} and isatom{?}.

First, we show what happens without filtering. It is an expansion of an earlier example:

ergo> insert{{a,b}:c, c::{h,k}, h[|www->1|],k[|ppp->kk, eee(123)->kkk|]},

string(a.object2json)[parse->pretty(?Res)]@\json, writeln(?Res)@\io.

{

"\\self": "a",

"\\isa": [

"c"

],

"ppp": [

"kk"

],

"www": [

1

],

"\\keyval": [

{

"functor": "eee",

"arguments": [

123

]

},

[

Portions Copyright c© 2013–2018 Coherent Knowledge 70

CHAPTER 10. IMPORTING JSON STRUCTURES

"kkk"

]

]

}

In contrast, the following query says that we want to see only the atomic properties (so
eee(123) will be omitted) and only such properties whose values are numbers. No restrictions
on superclasses is imposed:

ergo> string(a.object2json(isatomic{?},isnumber{?},null))[

parse->pretty(?Res)

]@\json, writeln(?Res)@\io.

{

"\\self": "a",

"\\isa": [

"c"

],

"www": [

1

]

}

We see that the complex property eee(123)->1 got dropped because it is not atomic and the
property "ppp" got dropped because its values are not integers.

Recursive export. Sometimes it is desirable to convert not just an object, but an object
together with its descendant objects—the ones reachable from the object via its attributes—
into a single JSON structure. For instance, in our family obj.flr example, kati has an
ancestor-descendant object hermann, which is also a person-object that has its own JSON
representation. We might want to attach that representation to the kati-JSON structure at
the point where "hermann" is attached. To enable such a recursive export into JSON, one
must set the recursive export option by executing the following query:

?- set_option(recursive_export=true)@\json.

We cannot show here the result of a recursive export for kati, as the resulting structure is
too big, but we will show a smaller example:

ergo> insert{{a,b}:d, d::e, e::k ,k[|ppp->kk:d[prop1->abc,prop2->3], ppp->jj|]},

string(a.object2json)[parse->pretty(?_Res)]@\json, writeln(?_Res)@\io.

{

"\\self": "a",

"\\isa": [

"d"

],

"ppp": [

Portions Copyright c© 2013–2018 Coherent Knowledge 71

CHAPTER 10. IMPORTING JSON STRUCTURES

{

"\\self": "jj"

},

{

"\\self": "kk",

"\\isa": [

"d"

],

"ppp": [

{

"\\self": "jj"

},

{

"\\self": "kk",

"\\isa": [

"d"

]

}

],

"prop1": [

{

"\\self": "abc"

}

],

"prop2": [

{

"\\self": 3

}

]

}

]

}

Here we see that "kk" (a ppp-descendant object of "a") is also JSON-expanded. Moreover,
it is easy to see that kk[ppp->kk] is true, which means that kk is a ppp-descendant of itself.
Thus, there is a cycle through kk in the descendant-object relation and if we kept expanding
kk as we traverse the ppp attribute, the resulting JSON term would be infinite. Therefore, as
you can see, the second time we encounter "kk" it is not expanded and only its isa-information
is shown (the sub-information would have also been shown, if it existed).

Portions Copyright c© 2013–2018 Coherent Knowledge 72

Chapter 11

Persistent Modules
by Vishal Chowdhary

This chapter describes a ERGO package that enables persistent modules. A persistent module
(abbr., PM) is like any other ERGO module except that it is associated with a database. Any
insertion or deletion of base facts in such a module results in a corresponding operation on the
associated database. This data persists across ERGO sessions, so the data that was present
in such a module is restored when the system restarts and the module is reloaded.

11.1 PM Interface

A module becomes persistent by executing a statement that associates the module with an
ODBC data source described by a DSN. To start using the module persistence feature, first
load the following package into some module. For instance:

?- [persistentmodules>>pm].

The following API is available. Note that if you load persistentmodules into some other
module, say foo, then foo should be used instead of pm in the examples below.

• ?- ?Module[attach(?DSN,?DB,?User,?Password)]@pm.

This action associates the data source described by an ODBC DSN with the module. If
?DB is a variable then the database is taken from the DSN. If ?DB is bound to an atomic
string, then that particular database is used. Not all DBMSs support the operation of
replacing the DSN’s database at run time. For instance, MS Access or PostgresSQL
do not. In this case, ?DB must stay unbound or else an error will be issued. For other
DBMS, such as MySQL, SQL Server, and Oracle, ?DB can be bound.

The ?User and ?Password must be bound to the user name and the password to be
used to connect to the database.

The database specified by the DSN must already exist and must be created by a previous
call to the method attachNew described below. Otherwise, the operation is aborted.
The database used in the attach statement must not be accessed directly—only through

73

CHAPTER 11. PERSISTENT MODULES

the persistent modules interface. The above statement will create the necessary tables
in the database, if they are not already present.

Note that the same database can be associated with several different modules. The
package will not mix up the facts that belong to different modules.

• ?- ?Module[attachNew(?DSN,?DB,?User,?Password)]@pm.

Like attach, but a new database is created as specified by ?DSN. If the same database
already exists, an exception of the form ERGO DB EXCEPTION(?ErrorMsg) is thrown. (In
a program, include flora exceptions.flh to define ERGO DB EXCEPTION; in the shell,
use the symbol ’ $ergo db error’.) This method creates all the necessary tables, if
they are not already present.

Note that this command works only with database systems that understand the SQL
command CREATE DATABASE. For instance, MS Access does not support this command
and will cause an error.

• ?- ?Module[detach]@pm.

Detaches the module from its database. The module is no longer persistent in the sense
that subsequent changes are not reflected in any database. However, the earlier data is
not lost. It stays in the database and the module can be reattached to that database.

• ?- ?Module[loadDB]@pm.

On re-associating a module with a database (i.e., when ?Module[attach(?DSN,

?DB,?User,?Password)]@pm is called in a new ERGO session), database facts previ-
ously associated with the module are loaded back into it. However, since the database
may be large, ERGO does not preload it into the main memory. Instead, facts are loaded
on-demand. If it is desired to have all these facts in main memory at once, the user
can execute the above command. If no previous association between the module and a
database is found, an exception is thrown.

• ?- set field type(?Type)@pm.

By default, ERGO creates tables with the VARCHAR field type because this is the
only type that is accepted by all major database systems. However, ideally, the CLOB
(character large object) type should be used because VARCHAR fields are limited to
4000-7000 characters, which is usually inadequate for most needs. Unfortunately, the
different database systems differ in how they support CLOBs, so the above call is
provided to let the user specify the field types that would be acceptable to the system(s)
at hand. The call should be made right before attachNew is used. Examples:

?- set_field_type(’TEXT DEFAULT NULL’)@pm. // MySQL, PostgreSQL

?- set_field_type(’CLOB DEFAULT NULL’)@pm. // Oracle, DB2

Once a database is associated with the module, querying and insertion of the data into the
module is done as in the case of regular (transient) modules. Therefore PM’s provide a
transparent and natural access to the database and every query or update may, in principle,
involve a database operation. For example, a query like ?- ?D[dept -> ped]@StonyBrook.

may invoke the SQL SELECT operation if module StonyBrook is associated with a database.
Similarly insert{a[b -> c]@stonyBrook} and delete{a[e -> f]@stonyBrook} will invoke

Portions Copyright c© 2013–2018 Coherent Knowledge 74

CHAPTER 11. PERSISTENT MODULES

SQL INSERT and DELETE commands, respectively. Thus, PM’s provide a high-level abstraction
over the external database.

Note that if ?Module[loadDB]@pm has been previously executed, queries to a persistent mod-
ule will not access the database since ERGO will use its in-memory cache instead. However,
insertion and deletion of facts in such a module will still cause database operations.

11.2 Examples

Consider the following scenario sequence of operations.

// Create new modules mod, db_mod1, db_mod2.

ergo> newmodule{mod}, newmodule{db_mod1}, newmodule{db_mod2}.
ergo> [persistentmodules>>pm].

// insert data into all three modules.

ergo> insert{q(a)@mod,q(b)@mod,p(a,a)@mod}.
ergo> insert{p(a,a)@db_mod1, p(a,b)@db_mod1}.
ergo> insert{q(a)@db_mod2,q(b)@db_mod2,q(c)@db_mod2}.

// Associate modules db_mod1, db_mod2 with an existing database db

// The data source is described by the DSN mydb.

ergo> db_mod1[attach(mydb,db,user,pwd)]@pm.

ergo> db_mod2[attach(mydb,db,user,pwd)]@pm.

// insert more data into db_mod2 and mod.

ergo> insert{a(p(a,b,c),d)@db_mod2}.
ergo> insert{q(a)@mod,q(b)@mod,p(a,a)@mod}.

// shut down the engine

ergo> \halt.

Restart the ERGO system.

// Create the same modules again

ergo> newmodule{mod}, newmodule{db_mod1}, newmodule{db_mod2}.

// try to query the data in any of these modules.

ergo> q(?X)@mod.

No.

ergo> p(?X,?Y)@db_mod1.

No.

// Attach the earlier database to db_mod1.

ergo> [persistentmodules>>pm].

Portions Copyright c© 2013–2018 Coherent Knowledge 75

CHAPTER 11. PERSISTENT MODULES

ergo> db_mod1[attach(mydb,db,user,pwd)]@pm.

// try querying again...

// Module mod is still not associated with any database and nothing was

// inserted there even transiently, we have:

ergo> q(?X)@mod.

No.

// But the following query retrieves data from the database associated

// with db_mod1.

ergo> p(?X,?Y)@db_mod1.

?X = a,

?Y = a.

?X = a,

?Y = b.

Yes.

// Since db_mod2 was not re-attached to its database,

// it still has no data, and the query fails.

ergo> q(?X)@db_mod2.

No.

Portions Copyright c© 2013–2018 Coherent Knowledge 76

Chapter 12

SGML and XML Import for ERGO

by Rohan Shirwaikar and Michael Kifer

This chapter documents the ERGO package that provides XML and XPath parsing capabili-
ties. The main predicates support parsing SGML, XML, and HTML documents, and create
ERGO objects in the user specified module. Other predicates evaluate XPath queries on XML
documents and create ERGO objects in user specified modules. The predicates make use of
the sgml and xpath packages of XSB.

12.1 Introduction

This package supports parsing SGML, XML, and HTML documents, converting them to
sets of ERGO objects stored in user-specified ERGO modules. The SGML interface provides
facilities to parse input in the form of files, URLs and strings (Prolog atoms).

For example, the following XML snippet

<greeting id=’1’>

<first ssn=111’>

John

</first>

</greeting>

will be converted into the following ERGO objects:

obj1[greeting -> obj2]

obj2[attribute(id) -> ’1’]

obj2[first -> obj3]

obj3[attribute(ssn) -> ’111’]

obj3[\text -> ’John’]

To load the XML package, just call any of the API calls at the ERGO prompt.

77

CHAPTER 12. SGML AND XML PARSER FOR ERGO

The following calls are provided by the package. They take SGML, XML, HTML, or XHTML
documents and create the corresponding ERGO objects as specified in Section 12.3.

?InDoc[load sgml(?Module) -> ?Warn]@\xml
Import XML data as ERGO objects.

?InDoc[load xml(?Module) -> ?Warn]@\xml
Import SGML data as ERGO objects.

?InDoc[load html(?Module) -> ?Warn]@\xml
Import HTML data as ERGO objects.

?InDoc[load xhtml(?Module) -> ?Warn]@\xml
Import XHTML as ERGO objects.

The arguments to these predicates have the following meaning:

?InDoc is an input SGML, XML, HTML, or XHTML document. It must have one of these
forms: url(’url ’), file(’file name’) or string(’document as a string’). If ?InDoc is just a
plain Prolog atom (ERGO symbol) then file(?Source) is assumed. ?Module is the name of
the ERGO module where the objects created by the above calls should be placed; it must be
bound. ?Warn gets bound to a list of warnings, if any are generated, or to an empty list; it is
an output variable.

12.2 Import Modes for XML in Ergo

XML can be imported into ERGO in several different ways, which can be specified via the
set mode(...)@\xml primitive. These modes control two aspects of the import:

• white space handling, and

• navigation links that may be added to the imported data.

12.2.1 White Space Handling

The XML standard requires that white space (blanks, tabs, newlines, etc.) must be preserved
by XML parsers. However, in the applications where ERGO is used, XML typically is viewed
as a format for data in which white space is immaterial. For that reason, by default, the
ERGO’s XML parser operates in the data mode in which every string is trimmed on both
sides to remove the white space. In addition, the empty strings ’’ are ignored. This implies
that, for example, there will be no \text attribute to represent a situation like this:

<doc>

<spaceonly> </spaceonly>

</doc>

and the only data created to represent the above document will be

Portions Copyright c© 2013–2018 Coherent Knowledge 78

CHAPTER 12. SGML AND XML PARSER FOR ERGO

obj1[doc->obj2]@bar

obj2[spaceonly->obj3]@bar

(plus some additional navigational data about order, siblings, parents, etc.). This means that,
if capturing certain white space is needed, it should be encoded explicitly in some way, e.g.,

<spaceonly>___</spaceonly>

instead of three spaces.

Alternatively, one can request to change the XML parsing mode to raw :

?- set_mode(raw)@\xml.

In this case, the parser will switch to the pedantic way XML parsers are supposed to interpret
XML and all white space will be preserved. However, beware what you wish because even
for the above tiny example the representation will end up not pretty because every little bit
of white space will be there (even the one that comes from line breaks):

obj1[doc->obj2]@bar

obj2[\text->obj3]@bar

obj2[\text->obj6]@bar

obj2[spaceonly->obj4]@bar

obj3[\string->’

’]@bar

obj4[\text->obj5]@bar

obj5[\string->’ ’]@bar

obj6[\string->’

’]@bar

It is more than likely an ERGO user will not want objects like obj3 and obj6.

Finally, if the raw mode is not what is desired, one can always switch back to the data mode:

?- set_mode(data)@\xml.

12.2.2 Requesting Navigation Links

This aspect can be changed via the calls

?- set_mode(nonavlinks)@\xml. // the default

?- set_mode(navlinks)@\xml.

where nonavlinks is the default.

The nonavlinks method uses a slightly simpler translation from XML to ERGO objects and
no extra navigation links are provided. This mode is used when the imported XML document
has known tructure and is viewed simply as set of data to be ingested (e.g., payroll data).

Portions Copyright c© 2013–2018 Coherent Knowledge 79

CHAPTER 12. SGML AND XML PARSER FOR ERGO

In the navlinks mode, the representation is slightly more complex but, most importantly,
that imported data includes additional information that provides parent/child/sibling links
among XML objects as well as the ordering information, which allows one to reconstruct the
original XML document. This mode is used when the structure of the input XML has high
variability or may even be arbitrary. This arises, for instance, when one needs to transform
arbitrary XML import or to extract certain information from unknown structures. The exact
representation of this navigational information is described in subsequent sections.

12.3 Mapping XML to ERGO Objects

This mapping is based on an XML-to-Flora-2 object correspondence developed by Guizhen
Yang. It specifies how an XML parser can construct the corresponding F-logic objects after
parsing an input XML document. The basic ideas are as follows:

• XML elements, attribute values, and text strings are modeled as objects in F-logic.

• XML elements are reachable from parent objects via F-logic frame attributes of the
same name as the XML element name.

• XML element attributes are also modeled as F-logic frame attributes but their name is
attribute(XML attribute name).

This mapping does not address comments or processing instructions—they are simply ignored.
However, this mapping does address the issue of mixed text/element content in which plain
text and subelements are interspersed. This mapping also assumes that XML entities are
resolved by the XML parser.

12.3.1 Invention of Object Ids for XML Elements

According to the XML specification 1.0, an XML element can be identified by an oid that
is unique across the document. The import mechanism invents such an oid automatically.
Sitting on top of the XML root element, there is an additional root object which just functions
as the access point to the entire object hierarchy corresponding to the XML document. The
oids of leaf nodes, which have no outgoing arcs and carry plain text only, are just the string
values themselves.

For example, the following XML document

<?xml version="1.0"?>

<person ssn="111-22-3333">

<name first="John"

last="Smith"/>

</person>

is represented via the following F-logic objects:

Portions Copyright c© 2013–2018 Coherent Knowledge 80

CHAPTER 12. SGML AND XML PARSER FOR ERGO

obj1[person -> obj2].

obj2[attribute(ssn) -> ’111-22-3333’, name -> obj3].

obj3[attribute(first) -> John, attribute(last) -> Smith].

Here obj1 is the root object, obj2 is the object corresponding to the person element, and
obj3 is the object that represents the name element. The strings ’111-22-3333’, John, and
Smith are oids that stand for themselves.

12.3.2 Text and Mixed Element Content

The content of an XML element may consist of plain text, or subelements interspersed with
plain text as in

<greeting>Hi! My name is <first>John</first><last>Smith</last>.</greeting>

How text is actually handled in the translation to F-logic depends on the mode of import:
nonavlinks or navlinks. The former is simpler because it discards all the information about
the order of the text nodes with respect to subelements and other text nodes.

• In the nonavlinks mode:
Each text segment is modeled as a value of the attribute \text of the parent element-
object of that text segment.1 Thus, for the above XML fragment, the translation would
be

obj1[greeting -> obj2].

obj2[\text -> {’Hi! My name is ’, ’.’},

first -> obj3,

last -> obj4

].

obj3[\text -> John].

obj4[\text -> Smith].

• In the navlinks mode:
Here the order of the text and subelement nodes must be preserved and so each text
node is modeled as if it were a value of a special attribute \string in an empty XML
element named \text, e.g.,

<\text \string="John"/>

As a consequence, a separate F-logic object is created to represent each text segment.
(Compare this to the translation in the nonavlinks mode, which does not create sepa-
rate objects for text nodes.) Thus, for the aforesaid greetings element the translation
will be

1 Of course, XML does not allow such names for tags and attributes, and this is the whole point: adding
such an invented name to the F-logic translation will not clash with other tag names that might be used in
the XML documents.

Portions Copyright c© 2013–2018 Coherent Knowledge 81

CHAPTER 12. SGML AND XML PARSER FOR ERGO

obj1[greeting -> obj2].

obj2[\text -> {obj3, obj8},

first -> obj4,

last -> obj6

].

obj3[\string -> ’Hi! My name is ’].

obj4[\text -> obj5].

obj5[\string -> John].

obj6[\text -> obj7].

obj7[\string -> Smith].

obj8[\string -> ’.’].

How exactly the aforesaid order is preserved in the navlinks mode is explained later.

12.3.3 Translation of XML Attributes

An XML attribute, attr, in an element is translated as an attribute by the name
attribute(attr) attached to the object that corresponds to that element.

XML element attributes of type IDREFS are multivalued, in the sense that their value is a
string consisting of one or more oids separated by whitespaces. Therefore, the value of such
an attribute is a set. The value of an XML IDREFS attribute is represented as a list.

For example, the following XML segment:

<paper id="yk00" references="klw95 ckw91">

<title>paper title</title>

</paper>

will generate the following F-logic atoms, assuming that the reference attribute is of type
IDREFS:

obj1[paper -> obj2]

obj2[title -> obj4]

obj2[attribute(id) -> yk00]

obj2[attribute(references) -> ’klw95 ckw91’

obj4[\text -> obj5] // here we assume that the navlinks mode was used

obj5[\string -> ’paper title’]

However: if the document has an associated DTD and the attribute references were specified
there as IDREFS as in

<!ATTLIST paper references IDREFS #IMPLIED>

then that attribute is translated as

obj2[attribute(references)->[klw95,ckw91]]

Portions Copyright c© 2013–2018 Coherent Knowledge 82

CHAPTER 12. SGML AND XML PARSER FOR ERGO

i.e., the value becomes a list.

With this, we are done describing the nonavlinks mode. The remaining subsections in the
current section apply to the navlinks mode only.

12.3.4 Ordering

This section applies to the navlinks mode only.

XML is order-sensitive and the order in which elements and text appear is significant, in
general. The order of the attributes within the same element tag is not significant, however.

While the nonavlinks mode is sufficient for most data-intensive uses of XML in ERGO, more
complex tasks may require the knowledge of how items are ordered within XML documents.
Specifying a total order among the elements and text in an XML document suffices for that
purpose, if this order agrees with the local order within each element’s content.

Consider the following XML document

<?xml version="1.0"?>

<person ssn="111-22-3333">

<name>

<first>John</first>

<last>Smith</last>

</name>

<email>jsmith@abc.com</email>

</person>

It can be represented by the tree in Figure 12.1 in which the parenthesized integers show the
total order assigned to the F-logic objects.

The ordering information that exists in XML documents is captured in F-logic via a special
attribute called \order, which tells position within the total ordering for each element and
text node. It is for that purpose that text segments are modeled in the navlinks mode as
element-style objects (each segment having its own oid) and not simply as attributes, as is
the case with the simpler nonavlinks mode.

12.3.5 Additional Attributes and Methods in the navlinks Mode

Since the navlinks mode is intended for applications that need to navigate from children
to parents, to siblings, and more, the importer adds the following additional attributes and
methods to the F-logic objects into which XML elements and text are mapped.

1. \in arc

For each node, \in arc returns the unordered set of labels of the arcs pointing to this
node, i.e., this node’s in-arcs. Roughly, \in arc is defined as follows:

?O[\in_arc -> ?InArc] :- ?[?InArc -> ?O].

Portions Copyright c© 2013–2018 Coherent Knowledge 83

CHAPTER 12. SGML AND XML PARSER FOR ERGO

obj0 (0)

|

| person

|

id /---- obj1 (1)

/ ^

/ / \

111-22-3333 name / \ email

/ \

(2) obj2 obj7 (7)

/ \ \

first / \last \ \text

/ \ \

(3) obj3 obj5 (5) obj8 (8)

| | \

\text | | \text \ \string

| | \

(4) obj4 obj6 (6) ’jsmith@abc.com’

| |

\string | | \string

| |

John Smith

Figure 12.1: Total ordering of the F-logic objects arising from XML ordering

Note that for a node representing a text segment, the value of its \in arc attribute is
\text.

2. \parent
For each node, \parent returns the oid of the parent node.

3. \leftsibling
For each node, \leftsibling returns the oid of the node appearing immediately before
the current node. This attribute is not defined for the nodes without a left sibling.

4. \rightsibling
For each node, \rightsibling returns the oid of the node appearing immediately after
the current node. This attribute is not defined for the nodes without a right sibling.

5. \childcount
For each element node, \childcount returns the number of the immediate children of
that element, which includes subelements and text segments.

6. \childlist
For each element node, \childlist returns a list of the oids of the immediate children
(subelements and text segments) of that element.

7. \child(N)

Portions Copyright c© 2013–2018 Coherent Knowledge 84

CHAPTER 12. SGML AND XML PARSER FOR ERGO

For each node, \child(N) returns the N-th child, where 0 ≤ N < \childcount. Note:
the first child is the 0-th child.

8. \in child arc(N)

For each node, \in child arc(N) returns the in-arcs of the N-th child, where 0 ≤ N <

\childcount. This attribute is defined as follows:

?O[\in_child_arc(?N)->?InArc] :- ?O[\child(?N)->?[\in_arc->?InArc]].

12.4 Inspection Predicates

This section applies both to the nonavlinks mode and the navlinks mode.

It is sometimes hard to see which objects have actually been created to represent an XML
document or an element. This is especially true in case of navlinks mode, which includes a
host of special navigational attributes. The purpose of inspection predicates is to provide a
simple way to view the objects, and they also filter the navigational attributes out. Consider
the document foo.xml below:

<mydoc id=’1’><first ssn=’111’>John</first></mydoc>

Even for such a simple document, the query

?- ’foo.xml’[load_xml(bar) -> ?W]@\xml. // load foo.xml into module bar

?- ?_X[?_Y->?_Z]@bar, ?Z = ${?_X[?_Y->?_Z]}. // get all facts

that asks for all the facts—stored and derived—will yield 56 results in the navlinks mode,
which is overwhelming to inspect visually. However, the core facts that describe these objects
are only 8, and they can be obtained by asking the query

?- bar[show->?P]@\xml.

One furthermore might want to see the representation of individual elements (e.g., element
named first):

?- bar[show(first)->?P]@\xml.

and this is much more manageable:

?P = ${obj4[\text->obj5]@bar}

?P = ${obj4[attribute(ssn)->’111’]@bar}

or of elements that have particular attributes (ssh in this example):

?- bar[show(attribute(ssn))->?P]@\xml.

which yields the same result as above (because the element first has the attribute ssn).

Portions Copyright c© 2013–2018 Coherent Knowledge 85

CHAPTER 12. SGML AND XML PARSER FOR ERGO

12.5 XPath Support

The XPath support is based on the XSB xpath package, which must be configured as explained
in the XSB manual. This package, in turn, relies on the XML parser called libxml2. It comes
with most Linux distributions and is also available for Windows, MacOS, and other Unix-
based systems from http://xmlsoft.org. Note that both the library itself and the .h files
of that library must be installed.

Note: XPath support does not currently work under Windows 64 bit (but does under 32
bits) due to the fact that we could not produce a working libxml2.lib file (xmlsoft.org
provides linxml2.dll for Windows 64, but not libxml2.lib).

The following predicates are provided. They select parts of the input document using the
provided XPath expression and create ERGO objects as specified in Section 12.3. These
predicates handle XML, SGML, HTML, and XHTML, respectively.

?InDoc[xpath xml(?XPathExp,?NS,?Mod)->?Warn] apply XPath expression to an XML
document and import the result

?InDoc[xpath xhtml(?XPathExp,?NS,?Mod)->?Warn] apply XPath expression to XHTML
and import the result

The arguments have the following meaning:

InDoc specifies the input document; this parameter has the same format as in Section 12.1.
?XPath is an XPath expression specified as a Prolog atom. ?Module is the module where the
resulting ERGO objects should be placed. ?Module must be bound. ?Warn gets bound to a
list of warnings, if any are generated during the processing—or to an empty list, if none.

?NamespacePrefList is a string that has the form of a space separated list of items of the
form prefix = namespaceURL . This allows one to use namespace prefixes in the ?XPath

parameter. For example if the XPath expression is ’/x:html/x:head/x:meta’ where x

stands for ’http://www.w3.org/1999/xhtml’, then this prefix would have to be defined
in ?NamespacePrefList:

url(’http://w3.org’)[xpath_xhtml(’/x:html/x:head/x:meta’,

’x=http://www.w3.org/1999/xhtml’,

foomodule)

-> ?Warnings]@\xml.

12.6 Low-level Predicates

This section describes low-level predicates in the XML package. These predicates parse the
input documents into Prolog terms that then must be further traversed recursively in order
to get the desired information.

• parse structure(?InDoc,?InType,?Warnings,?ParsedDoc)@\xml — take the docu-
ment ?InDoc or type ?InType (xml, xhtml, html, sgml) and parse it as a Prolog term
(will not be imported into any module as an object).

Portions Copyright c© 2013–2018 Coherent Knowledge 86

CHAPTER 12. SGML AND XML PARSER FOR ERGO

• apply xpath(?InDoc,?InType,?XPathExp,?NamespacePrefList,?Warnings,?ParsedDoc)@\xml
— like the above, but first applies the XPath expression ?XPathExp to ?InDoc. The
?InType parameter must be bound to xml or xhtml.

The output, ?ParsedDoc, is a Prolog term that represents the parse of the input XML doc-
ument in case of parse structure and the result of application of ?XPathExp to the input
document in case of apply xpath. The format of that parse is described in the XSB Man-
ual, Volume 2: Interfaces and Packages, in the chapter on SGML/XML/HTML Parsers and
XPath.

Portions Copyright c© 2013–2018 Coherent Knowledge 87

Bibliography

[1] Miguel Calejo. Interprolog: Towards a declarative embedding of logic programming in
java. In Jóse Júlio Alferes and João Leite, editors, Logics in Artificial Intelligence: 9th
European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004. Proceedings,
pages 714–717. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[2] H. Kyburg and C. Teng. Uncertain Inference. Cambridge University Press, 2001.

88

	JAVA-to-ERGO Interfaces
	The Low-level Interface
	Debugging ERGO Statements Used in a Java Program
	Logging
	Catching Exceptions, Checking Errors and Warnings

	The High-Level Interface (experimental)
	Executing Java Application Programs that Call ERGO
	How Do Applications Find the Knowledge Base?
	Summary of the Variables and Properties Used by the Interface
	Building the Prepackaged Examples

	ERGO-to-Java Interface
	General
	Dialog Boxes
	Windows
	Printing to a Window
	Scripting Java Applications

	Python-to-ERGO Interface
	Introduction
	Connecting to ERGO
	Talking to ERGO
	Talking to XSB
	Unpacking the Results
	Unpacking Results from pyergo_query()
	Unpacking Results from pyxsb_query()

	HTTP and Web Services
	General
	The HTTP API
	Miscellaneous

	Querying SQL Databases
	Connecting to a Database
	Queries

	Querying SPARQL Endpoints
	General
	Queries and Updates
	Creating Your Own Triple Store
	GraphDB
	Jena TDB

	Loading RDF and OWL files
	Loading RDF and OWL Files
	Other API Calls
	Importing Multiple RDF/OWL Files

	Evidential Probabilistic Reasoning in ERGO
	Importing Tabular Data (DSV, TSV, etc.)
	API for Loading and Saving Tabular Data
	Loading Multiple Spreadsheets into the Same Module
	Accessing Tabular Data via Frames
	Accessing via Frames and Meta Data

	Importing JSON Structures
	Introduction
	API for Importing JSON as Terms
	API for Importing JSON as Facts
	Exporting to JSON
	Exporting HiLog Terms to JSON
	Exporting ERGO Objects to JSON

	Persistent Modules
	PM Interface
	Examples

	SGML and XML Parser for ERGO
	Introduction
	Import Modes for XML in Ergo
	White Space Handling
	Requesting Navigation Links

	Mapping XML to ERGO Objects
	Invention of Object Ids for XML Elements
	Text and Mixed Element Content
	Translation of XML Attributes
	Ordering
	Additional Attributes and Methods in the navlinks Mode

	Inspection Predicates
	XPath Support
	Low-level Predicates

